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ABSTRACT

The subject of this dissertation includes studies on agricultural insurance and farm real

estate investment. Portfolio risk in crop insurance due to the systemic nature of crop yield

losses has inhibited the development of private crop insurance markets. Government subsidy

or reinsurance has therefore been used to support crop insurance programs. The first essay

investigates the possibility of converting systemic crop yield risk into “poolable” risk. The

results indicate that the systemic risk in crop insurance can be eliminated by combining crop

insurance policies across crops and countries. The second essay investigates farmland port-

folio returns from a forward-looking perspective taking into account time-varying return and

serial correlation. The results indicate that it takes a number of years for the expected re-

turn to reach the long-term equilibrium. From a forward-looking perspective, the attractive

average return level observed historically can only be attained over a long investment period.

The risk involved in the long investment period, however, is also considerably higher than

the historical sample volatility. The third essay examines the predictive power of macroe-

conomic risk factors for farmland asset returns. Farmland value slightly increased in 2017

even though farm income was lower. This development suggests the rate of return required

by investors for farmland asset has been reduced. One possible explanation for the decreas-

ing required rate of return is an increased money supply. Previous research suggests that

the money supply affects several macroeconomic risk factors through different transmission

channels, which in turn influence investor behaviors and asset returns. Both linear and neu-

ral network models are used in this study to predict farmland returns. The forecast accuracy

is compared across different models. The results indicate that farmland return prediction
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is significantly improved by adding capital market excess return as an explanatory variable.

Adding additional risk factors, however, does not improve the prediction with the sample

used in this study.
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CHAPTER 1. OVERVIEW

This dissertation consists of three essays discussing topics on agricultural insurance and

farm real estate investment. The first essay focuses on diversifying systemic risk in crop

insurance portfolios. Portfolio risk in crop insurance due to the systemic nature of crop yield

losses has inhibited the development of private crop insurance markets. Government subsidy

or reinsurance has therefore been used to support crop insurance programs. We investigate

the possibility of converting systemic crop yield risk into poolable risk. Specifically, we

examine whether it is possible to remove the co-movement as well as tail dependence of crop

yield variables by enlarging the risk pool across different crops and countries. Hierarchical

Kendall copula models are used to allow for potential non-linear correlations of the high-

dimensional risk factors. A Bayesian estimation approach is applied to account for estimation

risk in the copula parameters. The results indicate that the systemic risk in crop insurance

can be eliminated by combining crop insurance policies across crops and countries.

The second essay attempts to provide an explanation for the high return-low risk para-

dox in farmland investment. We investigate both the nominal and real returns of a farmland

portfolio from a forward-looking perspective. Land values and cash rents are slow to adjust

and therefore the return from owning land is likely to be time-varying and serially correlated.

Time-series and copula modeling techniques are used to construct the optimal portfolio and

to evaluate the risk-return profile. The results indicate that it takes a number of years for

the expected return to reach the long-term equilibrium. From a forward-looking perspec-

tive, the attractive average return level observed historically can only be attained over a

long investment period. The risk involved in the long investment period, however, is also

considerably higher than the historical sample volatility. This is due to autocorrelation in
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the return series. These findings help explain the high return and low risk puzzle observed

in historical farmland returns.

The third essay examines the predictive power of capital market risk factors for farmland

returns. Farmland value slightly increased in 2017 even though farm income was lower. This

development suggests the rate of return required by investors for farmland asset has been

reduced. A similar phenomenon has been observed in the equity market which also suggests

reduced equity risk premium. One possible explanation for the decreasing required rate of

return is an increased money supply. Previous research suggests that the money supply

affects several macroeconomic risk factors through different transmission channels, which

in turn influence investor behaviors and asset returns. This article examines the predictive

power of these risk factors for farmland asset returns. Both linear and neural network models

are used and the forecast accuracy is compared across different models. The results indicate

that farmland return prediction is significantly improved by adding capital market excess

return as an explanatory variable. Adding additional risk factors, however, does not improve

the prediction with the sample used in this study.
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CHAPTER 2. DIVERSIFYING SYSTEMIC RISK IN

AGRICULTURE

2.1 Introduction

There is substantial systemic risk in crop yield losses due to natural disasters such as

area-wide droughts. This systemic risk has been a potential obstacle for the development

of private crop insurance markets. Miranda and Glauber (1997) find that the portfolio risk

faced by US crop insurers is about ten times larger than that of conventional insurance lines.

The US government provides reinsurance via the USDA Risk Management Agency and this

helps explain the wide variety of crop insurance products available to US crop producers.

In countries where there is no government reinsurance, private crop insurers would need to

charge premiums well in excess of fair value so as to accumulate large enough reserves, or

purchase expensive international reinsurance. To date, this has impeded the introduction of

multi-peril crop insurance outside of the United States. If systemic risk in agriculture could

be managed with more efficient techniques and tools, crop insurance could potentially be

made available on a worldwide basis.

A central question addressed here is whether the systemic risk is inherently non-diversifiable

as its name suggests, or it is because the risk pool is too small to be well diversified. The sys-

temic risk comes from spatial positive correlations among crop yields caused by widespread

weather events. In addition, the correlations are characterized by “state-dependent” struc-

ture. Empirical evidence has shown that the correlations tend to be stronger during large

crop loss periods when diversification opportunities are most needed (Goodwin, 2001). This

suggests that there is potentially non-zero dependence existing in the lower tail of the dis-
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tributions of crop yield variables. Systemic risk may be underestimated without taking this

lower-tail dependence into account1.

Previous studies have explored diversification opportunities for systemic risk in crop

insurance. Wang and Zhang (2003) use a spatial statistics approach to investigate the extent

of correlation among county-level yields for corn, soybeans, and wheat in the United States.

The results indicate that the correlation of yield losses decreases with distance, and the

authors conclude systemic risk can be diversified if the risk pool is large enough. However,

the authors do not consider lower-tail dependence and implicitly assume constant correlation

levels. This may understate the magnitude of the risk as Goodwin (2001) indicates that

the spatial correlation decays with increasing distance with different patterns for different

weather events. In normal years, a faster spatial decay is observed while in extreme weather

years, the rate of decay is much reduced, suggesting an increased correlation of crop yields

in extreme years. Zhu et al. (2008) and Goodwin and Hungerford (2015), also indicate that

“state-dependent” correlation structure exists using model selection criteria when fitting

crop yield variables. These studies suggest that alternative correlation structures can have

significant implications for quantifying the magnitude of systemic risk and that a linear

correlation structure may seriously underrate the risk.

Recent studies have started to account for lower-tail dependence with the applications of

copula models for the evaluation of diversification effect. Xu et al. (2010) use three copulas

from the Archimedean copula family to determine the correlation of weather indices across

different regions in Germany. Okhrin et al. (2012) employ the hierarchical Archimedean

copula (HAC) models to explore the possibility of spatial diversification of systemic weather

risk in China. These two studies conclude that the possibility of reducing systemic risk by

increasing the size of risk pool is limited for index-based crop insurance within Germany and

China, respectively.

1For a formal definition of tail dependence, see McNeil et al. (2015).
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This article enlarges risk pool across different crop types and countries, and investigate

the diversification effect within the pool2. Two large agricultural producing countries — the

United States and China — and five major crops in each country are considered. A synthetic

area-yield insurance portfolio across the countries and crop types at the state/province-level

is used to evaluate the diversification effect34. It has been shown that the pooling effect

is greatest if area-yield insurance is provided at such a level (Miranda and Glauber, 1997).

Our empirical analysis demonstrates that the systemic nature — both positive correlation

and lower-tail dependence — of crop yield risks has been removed by pooling the spatially

diversified crops across the two countries.

Another contribution of this article is the application of the hierarchical Kendall copula

(HKC) in the context of agricultural risks. A variety of advanced copulas have been used in

agriculture due to their superiority over basic copulas in multivariate modeling. Examples

are vine copulas and the hierarchical Archimedean copula (HAC) (Goodwin and Hungerford,

2015; Okhrin et al., 2012). Given the high dimensionality of the problem at hand, we use

the hierarchical Kendall copula (HKC), a recent innovation in copula modeling. Compared

to other advanced copulas, the HKC achieves both flexibility and parsimony in modeling

the joint distribution of high dimensional variables. The hierarchical structure of the HKC

ensures that it is parsimonious in terms of the number of copula parameters. In addition,

the basic copula at each hierarchical level of the HKC is not limited to any copula class.

The HKC parameters are estimated using a sequential procedure. Parameters of the

basic copulas at the lowest hierarchical level are estimated first. Parameters of the copu-

2Risk pooling across different countries may need an intermediary agency working on regulatory condi-
tions. An example of such an agency is the World Bank, which has initiated the African Risk Capacity
(ARC) project which pools systemic extreme climate risks across African countries.

3An area-yield insurance contract indemnifies the owner based on the shortfall of average crop yields in
a specific area indicated in the contract.

4Area-yield insurance at the state/province-level would result in yield basis risk for farmers. If the insurer
were to offer individual coverage this yield basis risk would be eliminated. The additional risk taken on by
offering this additional coverage would, by definition be poolable and would not impact the systemic risk
that is the focus of this paper.
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las at higher levels are estimated consecutively by plugging-in the estimates of the copula

parameters from lower levels. In cases where the choice of the appropriate copula might

influence the results, we provide a sensitivity analysis using alternative models. A Bayesian

approach is applied to take into account estimation risk. This approach avoids accumulating

estimation errors at each sequential estimating step. With the estimated HKC model, the

risk associated with the insurance portfolio can be assessed from the predictive distribution

of joint insurance loss.

2.2 Basic Copulas

The copula was first introduced by Sklar (1959). Sklar’s theorem states that if F is an

arbitrary k-dimensional joint continuous distribution function, then the associated copula is

unique and defined as a continuous function C : [0, 1]k → [0, 1] that satisfies the equation

F (x1, . . . , xk) = C[F1(x1), . . . , Fk(xk)], x1, . . . , xk ∈ R, (2.1)

where F1(x1), . . . , Fk(xk) are the respective marginal distributions.

Basic copula families are generally composed of parametric and nonparametric copulas.

Empirical studies typically use parametric copulas because of their superiority in simulation.

The most frequently used parametric copulas are elliptical copulas and Archimedean copulas,

each of which implies different correlation structures (Power et al., 2009; Cooper et al., 2012;

Larsen et al., 2013). These will serve as the building blocks for more complicated correlation

structures used later in this study.

2.3 Hierarchical Copulas

Basic copulas are effective for problems with low dimensionality, such as with pair-wise

correlation. For higher dimensions, the correlation structure implied by basic copulas is
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inflexible and restrictive. For example, some Archimedean copulas, while allowing for asym-

metric tail dependence, imply symmetry of the permutation of variables within the copula

function. That is, the order of the marginal distributions is exchangeable. This restriction

is strict and implausible. In addition, Archimedean copulas represent the multivariate cor-

relation structure with only one single parameter, this may lead to large estimation errors

(Okhrin et al., 2012).

Recent research has developed advanced copula models for situations with high dimen-

sionality. These include vine copulas and hierarchical Archimedean copulas. A vine copula

is built by decomposing the joint multivariate density into a product of pairwise-copulas,

thereby allowing for considerable flexibility in higher dimensions. However, the extremely

large number of copula parameters (at least n(n − 1)/2 parameters for n dimensions) may

severely affect the usefulness of vine copulas from a computational viewpoint. Hierarchical

Archimedean copulas are much more parsimonious in terms of the number of copula param-

eters (n − 1 parameters for n dimensions). However, the building blocks are restricted to

the class of Archimedean copulas, which, as mentioned earlier, are not appropriate in some

applications.

Hierarchical Kendall copulas have both flexibility and parsimony when modeling the

correlation structure in high dimensional situations. A hierarchical Kendall copula is built

by a hierarchy of basic copulas that limits the number of copula parameters. In contrast to

hierarchical Archimedean copulas, the choice of the basic copula at each hierarchical level is

not limited to any copula class. In other words, the building blocks of a hierarchical Kendall

copula can be basic copulas of any arbitrary type.
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2.3.1 Kendall Distribution Functions

An important component of hierarchical Kendall copulas is the Kendall distribution func-

tion. Following Genest and Rivest (1993) and Brechmann (2014), for U := (U1, . . . , Ud)
′ ∼ C,

where C is a d-dimensional copula, the Kendall distribution function K(d) is defined as

K(d)(t) := P (C(U) ≤ t), t ∈ [0, 1] . (2.2)

For t ∈ [0, 1], it holds that t ≤ K(d)(t) ≤ 1 and K(d)(0−) = 0. By definition, the Kendall

distribution function is the univariate distribution function of the random variable Z :=

C(U). Thus, it holds that K(d)(Z) ∼ U(0, 1).

It is in general complicated to derive the Kendall distribution function in explicit form

for a given copula. A recursive formula is given by Imlahi et al. (1999):

K(d)(t) = K(d−1)(t) +

∫ 1

t

∫ 1

C−1
u1

(t)

· · ·
∫ 1

C−1
u1,...,ud−2

(t)

∫ C−1
u1,...,ud−1

(t)

0

c(u1, . . . , ud)dud . . . du1, (2.3)

where K(d) denotes the Kendall distribution function of the d-dimensional copula C with the

density c, and K(d−1) denotes the Kendall distribution function of the (d − 1)-dimensional

margin of the first d−1 variables. The formula is also involved with the inverse of the copula

quantile function C−1
u1,...,ur

which is defined as

C(u1, . . . , ur, C
−1
u1,...,ur

(z), 1, . . . , 1) = z, (2.4)

for r = 1, . . . , d− 1, and C−1
∅ (z) := z for z ∈ (0, 1).

The usually high-dimensional integration and lack of a copula quantile function in explicit

form make it impossible to determine the Kendall distribution function explicitly. One
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exception is with Archimedean copulas. Barbe et al. (1996) derive the Kendall distribution

function for a d-dimensional Archimedean copula with generator ϕ as

K(d)(t) = t+
d−1∑
i=1

(−1)i

i!
ϕ(t)i(ϕ−1)(i)(ϕ(t)), (2.5)

for t ∈ (0, 1], where (ϕ−1)(i)(·) denotes the i-th derivative of ϕ−1.

Brechmann (2014) defines the hierarchical Kendall copula from the Kendall distribution

function as follows:

“Let u1, . . . , un ∼ U (0, 1) and let C0, C1, . . . , Cd be copulas of dimensions d, n1, . . . , nd,

respectively, where ni ≥ 1, i = 1, . . . , d, and n =
∑d

i=1 ni. Let K1, . . . , Kd denote the Kendall

distribution functions corresponding to C1, . . . , Cd, respectively. Define mi =
∑i

j=1 nj for

i = 1, . . . , d, and m0 = 0 as well as Ui := (umi−1+1, . . . , umi)
′

and Vi := Ki(Ci(Ui)) for

i = 1, . . . , d. Under the assumptions that

A1 : U1, . . . , Ud are mutually independent conditionally on (V1, . . . , Vd)
′
, and

A2 : the conditional distribution of Ui | (V1, . . . , Vd)
′

is the same as the conditional distribu-

tion of Ui | Vi for all i = 1, . . . , d, that is, FUi|V1,...,Vd = FUi|Vi ∀i ∈ {1, . . . , d},

the random vector (u1, . . . , un)
′
is said to be distributed according to the hierarchical Kendall

copula CK with nesting copula C0 and cluster copulas C1, . . . , Cd if

(i) Ui ∼ Ci ∀i ∈ {1, . . . , d},

(ii) (V1, . . . , Vd)
′ ∼ C0.”

As Brechmann (2014) notes, the two assumptions can be interpreted as: conditional on

the information of the nesting variables V1, . . . , Vd, the clusters U1, . . . , Ud are independent

of each other and also independent of other nesting variables. That is, while the corre-

lations within each cluster Ui are explained by the joint behavior of the random variables

umi−1+1, . . . , umi for i = 1, . . . , d, the correlations among the clusters U1, . . . , Ud are explained
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through the joint behavior of the unobserved factors V1, . . . , Vd, each of which has a uniform

distribution because Ci(Ui) ∼ Ki for all i = 1, . . . , d.

The above definition from Brechmann (2014) shows how a two-level hierarchical Kendall

copula is built. The construction can be extended to an arbitrary number of levels. Figure

2.1 is an illustration of a simple three-level hierarchical Kendall copula. For more detailed

descriptions of the general k-level hierarchical Kendall copulas, reference can be found in

Brechmann (2014).

Figure 2.1 Illustration of A Three-level Hierarchical Kendall Copula

2.4 Empirical Application

Here we apply hierarchical Kendall copulas to examine the effectiveness of diversifying

systemic risk across five crops—corn, cotton, rice, soybeans, and wheat—in the United States
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and China. The study area includes ten major producing states in the United States and

ten major producing provinces in China for each crop except rice. Only six US states have

sufficient data for rice. The US crop yield data include 46-dimensional state-level historical

yields, and the Chinese crop yield data include 50-dimensional province-level historical yields.

The US crop yield data, covering a 44-year period from 1970 to 2013, are taken from the

USDA’s National Agricultural Statistics Service (NASS) databases. The Chinese crop yield

data, covering a 31-year period spanning from 1979 to 2009, are taken from China Statistical

Yearbook.

2.4.1 Detrending the Yield Data

The observed yield data are detrended by fitting a simple linear trend model5:

yt = β0 + β1t+ εt, (2.6)

where t = 1970, . . . , 2013 for the US data, and t = 1979, . . . , 2009 for the Chinese data. The

corresponding yield trends are calculated as the predicted yields from the above regression:

ŷt = β̂0 + β̂1t, (2.7)

Detrended yields to 2009-equivalents are generated as:

ydett = yt
ŷ2009

ŷt
. (2.8)

where t = 1970, . . . , 2013 for the US, and t = 1979, . . . , 2009 for China. All the yield data

used in the remainder of this article are composed of the detrended 2009-equivalent yields.

5More complex detrending procedures include log-linear (Woodard and Garcia, 2008) and linear spline
models (Harri et al., 2011).
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2.4.2 Estimation

A commonly used two-step procedure is adopted to estimate the parameters of the hi-

erarchical Kendall copula model. This method is called inference for margins (IFM) (Joe

and Xu, 1996). In the IFM method, the parameters of the marginal distributions are esti-

mated first. Next, the copula parameters are determined given the estimated margins F̂Xi ,

i = 1, . . . , n. That is, the parameters of the hierarchical Kendall copula are estimated based

on the uniform variables derived as ûji = F̂Xi(xji), j = 1, . . . , t, i = 1, . . . , n. As demon-

strated by Joe (2005), the IFM method provides consistent estimators of copula parameters,

with very little loss in accuracy when compared to joint estimation of the parameters of

marginal and copula functions.

The marginal distribution for each yield variable is estimated independently. As Goodwin

(2015) notes, there is little guidance for selecting an optimal distribution for crop yield

density among various parametric alternatives. The beta distribution has found favor in

many studies to capture potential skewness of crop yields (Babcock and Hennessy, 1996;

Nelson and Preckel, 1989). The beta density function of a variable y can be written as:

Beta(y | α, β, ymin, ymax) =
Γ(α + β)

Γ(α)Γ(β)

(y − ymin)α−1(ymax − y)β−1

yα+β−1
max

, ymin ≤ y ≤ ymax, (2.9)

where Γ(·) denotes the gamma function, ymin and ymax are parameters for the lower and

upper limits of the feasible range for y respectively, and α and β are shape parameters.

A separate beta distribution is fitted to the historical data for each yield variable yi. For

each yi, the lower and upper limits are set as ymini = 0 and ymaxi = yUi + 1.5σi, where yUi

denotes the maximum observation of yi, and σi is the sample standard deviation of yi. The

shape parameters αi and βi are estimated by the maximum likelihood method.

The second step of the IFM method involves the estimation of copula functions. This is

based on the uniform variables ui = F̂i(yi), where F̂i is the cumulative distribution function
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(CDF) of the estimated beta distribution for yield variable yi from the first step. The vi-

sual patterns of the correlations between the variables are shown in Figure 2.2. Each of the

scatterplots displays a sample of the uniform variables from randomly selected pairs of US

states or Chinese provinces. From the plots, it is observed that while risk-pooling across dif-

ferent crop types within the United States mitigates the magnitude of lower-tail dependence

(bottom-left mass), combining the two countries appears to eliminate the systemic nature

of the risks altogether.

Figure 2.2 Scatter Plots of the CDF of Randomly Paired Detrended Yields in the
Same Year
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The hierarchical copula representation of the uniform variables depends on the specific

hierarchical structure. A natural clustering takes place where each of the two countries forms

a geographical cluster. Within each country/cluster, the structure is built by aggregating a

group of variables using one cluster copula at each hierarchical level. Archimedean copulas

are used as cluster copulas at all hierarchical levels6. This is done because an explicit form

of the Kendall distribution function is available only for this case (Brechmann, 2014). The

cluster copulas are all bivariate so that all the substructure of the correlations can be revealed.

All cluster copulas are selected to be of the same type so as to limit model complexity. The

commonly used Gaussian copula is used as a benchmark model to evaluate the fit of the

cluster copulas within each country/cluster.

To specify the hierarchical structure within each cluster, a metric is needed to measure

the distance between (groups of) variables. Variables with shorter distance are aggregated

at a lower hierarchical level. The distance between two variables is determined by the level

of correlation between them. The higher the correlation, the shorter the distance. As the

copula parameter is increasing with the associated (rank) correlation level for both survival

Gumbel and Clayton copulas, the distance can be appropriately measured by the value of

the copula parameters.

Following Okhrin and Ristig (2012), the hierarchical structure within each cluster is

constructed using the following recursive approach. At the lowest level, a bivariate cluster

copula is fitted to every possible couple of the variables ui using the maximum likelihood

method. We select the pair of variables (denoted as û1 and û2) with the highest level

of correlation and denote the estimated bivariate copula and its parameter as C1 and θ̂1,

6For high dimensions, there is a trade-off between revealing the substructure of correlations and fully
exploiting the flexibility of the HKC within a cluster. While bivariate cluster copulas display the complete
substructure of correlations, the large number of possible combinations of bivariate Archimedean copula types
requires simplification at the cost of underusing the flexibility of the HKC. While exchangeable multivariate
Archimedean copulas reduce the number of the possibilities, the substructure is hidden and the implied
permutation symmetry is not plausible (Okhrin et al., 2012).
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respectively. Then we introduce a pseudo-variable Z1 = C1

(
û1, û2; θ̂1

)
. At the next step,

the remaining variables and the pseudo-variable compose a new set. We proceed in the same

way considering this new set of variables. The most highly correlated couple of variables are

selected from this new set and another pseudo-variable is obtained from the corresponding

estimated bivariate copula. This procedure is repeated until the whole hierarchical structure

is determined.

No obvious tail dependence is observed in the scatterplots of the correlations between

the two countries/clusters. Therefore, the Gaussian copula and the Frank copula, both of

which imply no tail dependence, are chosen as our alternatives for the nesting copula. The

absence of tail dependence is confirmed by a sensitivity analysis provided later.

In summary, four different hierarchical Kendall copulas are used to model the entire

correlation structure. These are: (a) survival Gumbel clustering with Gaussian nesting; (b)

Clayton clustering with Gaussian nesting; (c) survival Gumbel clustering with Frank nesting;

and (d) Clayton clustering with Frank nesting (see Figure 2.3).

2.4.3 Estimation of the Copula Parameters in the Presence of Estimation Risk

The parameters of a hierarchical Kendall copula with specified structure can be esti-

mated with the sequential maximum likelihood procedure provided by Brechmann (2014).

To improve the quality of the estimation of the copula parameters, our estimation strategy

takes estimation risk into account. The approach, based on Bayes’ criterion, allows us to

incorporate parameter uncertainty (model uncertainty) and avoid accumulating estimation

errors when sequentially estimating the hierarchical Kendall copula parameters7. In addi-

tion, credible intervals of the correlation level, and by extension the insurance loss can be

constructed from the Bayesian framework.

7We focus on the copula parameters which determine the correlation level and the diversification effect.
Estimation risk for the marginal distributions is not considered here because it would not influence the level
of systemic risk.



www.manaraa.com

16

Figure 2.3 Alternative Hierarchical Kendall Copula Models for the Entire Correla-
tion Structure

For a two-level hierarchical Kendall copula CK with nesting copula C0 and cluster copulas

C1, . . . , Cd, let (uj,1, . . . , uj,n)
′
j=1,...,t be a sample of the hierarchical Kendall copula CK , where

C0, C1, . . . , Cd are copulas of dimensions d, n1, . . . , nd, respectively. Define mi =
∑i

l=1 nl for

i = 1, . . . , d, and m0 = 0. The estimates of the parameters θ0, θ1, . . . , θd of the copulas

C0, C1, . . . , Cd, respectively, are obtained by

(i) estimating θi based on (uj,mi−1+1, . . . , uj,mi)
′
j=1,...,t using the Bayesian method and

obtaining the posterior density p(θi | uj,mi−1+1, . . . , uj,mi) for θi, for i = 1, . . . , d, and

(ii) estimating θ0 based on the pseudo observations

v̂j,i :=

∫
Θ

Ki(Ci(uj,mi−1+1, . . . , ujmi ; θi); θi)p(θi | uj,mi−1+1, . . . , uj,mi)dθi,

i = 1, . . . , d, j = 1, . . . , t, (2.10)
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using the Bayesian method. This procedure can be generalized for estimating k-level hier-

archical Kendall copulas by proceeding with more iterations.

Our hierarchical Kendall copula models are estimated using the above procedure. The

cluster and nesting copulas have all been specified as bivariate copulas. The posterior density

for the bivariate copula parameter θ conditional on a sample of two variables (u1, u2), is the

product of the likelihood function f (u1, u2 | θ) and the prior distribution π (θ) normalized

by an appropriate constant:

p (θ | u1, u2) =
f (u1, u2 | θ) π (θ)∫
f (u1, u2 | θ) π (θ) dθ

. (2.11)

Given a sample (uj,1, uj,2)
′
j=1,...,t of the variables (u1, u2), the likelihood function is given

by

f (u1, u2 | θ) =
T∏
t=1

f (u1t, u2t | θ) =
T∏
t=1

c (u1t, u2t | θ) , (2.12)

where c(·, ·) is the copula density function derived by taking derivatives of the copula function

C:

c (u1, u2 | θ) =
∂2C (u1, u2 | θ)

∂u1∂u2

. (2.13)

For the bivariate survival Gumbel copula, the density function is derived as

c̄G (ū1, ū2 | θ) =

[
(− ln ū1)θ + (− ln ū2)θ

] 1
θ

+ θ − 1

ū1ū2

· exp

{
−
[
(− ln ū1)θ + (− ln ū2)θ

]1/θ
}[

(− ln ū1)θ + (− ln ū2)θ
]

(− ln ū1)θ−1 (− ln ū2)θ−1 ,

(2.14)

where ūi = 1− ui for i = 1, 2 are “survival variables.”
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For the bivariate Clayton copula, the density function is derived as

cC (u1, u2) = (θ + 1)
(
u−θ1 + u−θ2 − 1

)− 1
θ
−2
u−θ−1

1 u−θ−1
2 . (2.15)

For the bivariate Frank copula, the density function is derived as

cF (u1, u2) = − θexp(−θu1)exp(−θu2)[exp(−θ)− 1]

{[exp(−θu1)− 1][exp(−θu2)− 1] + exp(−θ)− 1}2
. (2.16)

For the bivariate Gaussian copula, the density function is derived as

cN (v1, v2 | Σ) = |Σ|−
1
2 exp{− [Φ−1(v1),Φ−1(v2)]

′
(Σ−1 − I) [Φ−1(v1),Φ−1(v2)]

2
}, (2.17)

where ΦΣ is a two-dimensional normal distribution with zero mean and correlation matrix

Σ, Φ−1 is the inverse distribution function of the standard normal distribution, and I is the

identity matrix.

Following Bokusheva (2011), a non-informative uniform distribution is selected as the

prior for the parameters of all the bivariate Archimedean copulas8. The bounds are selected

so that a wide range of the support for the parameter is covered: θ ∼ U (1, 100) for the

survival Gumbel copula, θ ∼ U (0, 100) for the Clayton copula, and θ ∼ U (−1000, 1000) for

the Frank copula.

Following Smith (2011), the prior for the correlation matrix of the bivariate Gaussian

copula is selected based on a Cholesky decomposition. The correlation matrix Σ can be

decomposed as

Σ = diag(Ω)−
1
2 Ωdiag(Ω)−

1
2 , (2.18)

8Informative priors can be used to incorporate expert knowledge into this type of model, as demonstrated
in Shen et al. (2016). The use of such priors would tighten the distribution and reduce systemic risk. In
order to be conservative, we assume non-informative priors.
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where Ω is a positive definite matrix. And the matrix Ω can be decomposed as

Ω = RR
′
, (2.19)

where R = {ri,j} is a lower triangular Cholesky factor. To ensure the decompositions are

unique, we set ri,i = 1, for i = 1, 2. Then the correlation matrix Σ can be written as

Σ =

 1 r2,1√
1+r22,1

r2,1√
1+r22,1

1

 . (2.20)

A non-informative prior distribution of r2,1 is assigned as r2,1 ∼ U(−100, 100) to cover a

wide range of the support for the correlation matrix.

The posterior distribution of the copula parameters is simulated using Markov Chain

Monte Carlo (MCMC) methods. For each parameter, three chains of 600,000 iterations are

run for different sets of initial values. The first 300,000 iterations are then discarded. In order

to reduce autocorrelation, every 30th iteration of each chain is saved. Adequate convergence

is confirmed by both the Monte Carlo error and the Gelman-Rubin (1992) test9.

Note that within each of the two clusters, Bayesian inference is based on all the available

data. Within the US, it is based on the historical yield data covering 44 years (1970—2013),

and results in the pseudo observations v̂1970,us, . . . , v̂2013,us. Within China, it is based on the

historical yield data covering 31 years (1979—2009), and results in the pseudo observations

v̂1979,ch, . . . , v̂2009,ch. As Chinese historical yield data is not available for the time before year

1979 or after year 2009, Bayesian inference for the nesting copula parameter is based on part

of the US pseudo observations and all the Chinese pseudo observations: v̂1979,us, . . . , v̂2009,us

and v̂1979,ch, . . . , v̂2009,ch. This again demonstrates the flexibility of the hierarchical Kendall

copula model. Although the information contained in the US data before 1979 or after

9The Monte Carlo error is less than 1/1000 and the potential scale reduction factor is less than 1.1 for
all parameters.
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2009 cannot be used for estimating the nesting copula because of lack of the corresponding

Chinese data, it can still be used for estimating the cluster copulas within the US. With such

a copula model, all the relevant information in the available data can be exploited.

The Kendall’s correlation coefficient is selected as a measure of association between the

correlation level and the copula parameter because it is indifferent to nonlinear monotonic

transformations10. Following Nelsen (2006), the Kendall’s τ associated with Archimedean

copulas can be expressed as τ = 1− 1
θ

for the survival Gumbel copula, τ = θ
θ+2

for the Clayton

copula, and τ = 1− 4
θ

+ 4

θ2
∫ θ
0

t
exp(t)−1

dt
for the Frank copula. The Kendall’s τ associated with

the Gaussian copula can be written as τ(vi, vj) = 2
π

arcsin(εij), where εij is the (i, j) th

element of the correlation matrix Σ of the Gaussian copula.

Within the US, the posterior mean of the Kendall’s τ associated with the cluster copulas

ranges from 0.111 to 0.698 as implied by the survival Gumbel copula, and from 0.091 to

0.638 as implied by the Clayton copula. Within China, the posterior mean of the Kendall’s

τ associated with the cluster copulas ranges from 0.072 to 0.613 as implied by the survival

Gumbel copula, and from 0.046 to 0.575 as implied by the Clayton copula. This indicates

that there is positive correlation existing among the yield variables within each country.

The fit of the cluster copulas within each country is compared to that of a multivariate

Gaussian copula. The Gaussian copula models are estimated using maximum likelihood.

While the formal Vuong test is mainly conducted for pairwise comparison, the AIC and

BIC criteria have been commonly used in the literature to compare the goodness-of-fit of

multiple models (Hungerford and Goowin, 2014; Larsen et al., 2015). Table 2.1 presents

the log-likelihood and AIC/BIC values of different copula fits for each country. It is to be

expected that the Gaussian copula model will have a larger log-likelihood value due to the

large number of parameters of the model. However, according to the AIC and BIC values,

10A reviewer pointed out that crop yield distributions are nonstationary with respect to mean and variance.
It is therefore possible that our assumption of a constant structure of dependencies across time is incorrect.
Investigating whether there is structural change in this structure is beyond the scope of this paper.
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the hierarchical Kendall copula model, with either survival Gumbel clustering or Clayton

clustering, provides superior fit for within-country correlations for both the US and China.

The survival Gumbel clustering leads to a better fit than the Clayton clustering. These

results indicate that taking into account lower-tail dependence provides a better fit of the

correlations of crop yields within each country. This is consistent with the visual patterns

of the correlations observed from the scatterplots.

Table 2.1 Goodness-of-fit Statistics of Different Copula Models for Within-country
Correlations of Crop Yields in the US and China

Log-lik. # of Par. AIC BIC
U.S.

Hier. Kendall (Survival Gumbel) 504.94 45 -919.88 -839.60
Hier. Kendall (Clayton) 445.80 45 -801.60 -721.31

Gaussian 1308.27 1035 -546.53 1300.11
China

Hier. Kendall (Survival Gumbel) 331.51 49 -565.01 -471.32
Hier. Kendall (Clayton) 267.29 49 -436.59 -342.90

Gaussian 1160.96 1225 128.07 1884.71

The between-country correlation is calculated from the nesting copula. The posterior

distribution of the Kendall’s τ associated with the nesting copula is plotted in Figure 2.4.

From the graph, the posterior mean and median are both very close to zero under all of the

four models. In addition, with a posterior probability of 95%, the correlation is less than

0.151 (0.067) for Gaussian nesting with survival Gumbel (Clayton) clustering, and less than

0.152 (0.003) for Frank nesting with survival Gumbel (Clayton) clustering, all indicating

that there is little positive correlation in crop yields between the two countries.

2.5 Simulation Study

Next, we use a simulation study to investigate the degree of diversification that can be

expected. Using simulated copula parameters from the full posterior distribution and the
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Figure 2.4 Posterior Distribution of Kendall’s Correlation Coefficient Associated
with the Nesting Copulas

estimated Beta margins, a sample of predicted crop yields can be generated. The predictive

distribution of aggregated net insurance income at different coverage levels can then be

obtained based on the predicted crop yields. The systemic risk associated with an insurance

portfolio is assessed by the statistics of the predictive distribution of net insurance income.
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According to Bayes’ theorem, the posterior predictive distribution of a new unknown

observable ũ conditional on the observed data u is

p(ũ | u) =

∫
p(ũ, θ | u)dθ =

∫
p(ũ | θ, u)p(θ | u)dθ =

∫
p(ũ | θ)p(θ | u)dθ. (2.21)

Recall that we have independently simulated a sample of 30, 000 values from the posterior

distribution for each copula parameter. So a sample of the uniform variables ui can be gen-

erated by simulating the sth observation of the uniforms from the corresponding hierarchical

Kendall copula with the sth simulated copula parameters, for s = 1, . . . , 30000. Sampling

from a given hierarchical Kendall copula is conducted with the algorithm provided by Brech-

mann (2014). Given all the simulated uniform variates from the copula model, predicted

crop yields are obtained based on previously estimated Beta marginal distributions.

We consider insurance portfolios composed of state (province)-level area yield insurance

contracts. For each state (province)-level insurance contract i, the indemnity paid for one

unit area takes the form of

Ii = pi ∗max[λyei − yi, 0], (2.22)

where yi denotes the realized crop yield, yei = E(yi) denotes the expected crop yield, λ

denotes the coverage level, and pi denotes the base price of the crop associated with insurance

contract i, which represents the expected harvest time price at planting time. We consider

two coverage levels (CL) 70% and 90%. The base price is specified as the average US
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futures price during the planting month for futures contract expiring at harvest time11. The

actuarially fair premium πi is equal to the expected indemnity payment:

πi = E(Ii) = pi ∗ Emax[λyei − yi, 0] = pi ∗ E[(λyei − yi)I(yi ≤ λyei )], (2.23)

where I is the indicator function. The net insurance loss of contract i can then be written

as

Li = Ii − πi. (2.24)

The aggregated net insurance loss L associated with an insurance portfolio is therefore the

weighted average of Li:

L =
∑

wiLi, (2.25)

where wi denotes the weight of insurance contract i in the portfolio, which is assumed to be

proportional to the planting area that insurance contract i covers.

2.5.1 Diversification Effect across the Crops within Each Country

We first investigate the diversification effect across the five crops (corn, cotton, rice, soy-

beans, and wheat) in the United States. The simulated net insurance losses under three

different scenarios are compared: (a) insuring the five crops separately ignoring any diver-

sification effect across the five crops (separately); (b) insuring them jointly assuming the

estimated correlation structure of crop yields (jointly); and (c) insuring them jointly assum-

ing independence of crop yields across the five crops (benchmark). Table 2.2 presents the

11Ideally, Chinese futures price should be used as the base price for Chinese crops. However, reliable
records of Chinese futures prices do not exist for the five crops for the entire time period. Therefore, US
futures price is used as an approximate base value for Chinese crops. This, will impose downward bias on
the estimated diversification effect.
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statistics of the distribution of net insurance income under the three scenarios12. Recall that

two kinds of cluster copulas (survival Gumbel and Clayton) are evaluated to measure the

within-country correlations. Here we report simulation results from the survival Gumbel

copula. Results from the Clayton copula are similar.

Table 2.2 Simulated Distribution of Net Insurance Income ($/acre) over Multiple
Crops in the US Using Survival Gumbel Clustering

Std Min VaR(1%) VaR(5%)
70% Coverage Level

Separately 2.45 -59.12 -10.40 -2.05
Jointly 1.77 -52.66 -7.01 -1.68

Benchmark 1.54 -38.59 -6.09 -1.68
90% Coverage Level

Separately 12.47 -134.48 -52.72 -24.67
Jointly 9.64 -122.73 -41.15 -18.05

Benchmark 8.01 -77.40 -32.54 -15.53

Since we are assuming that companies charge a fair premium, and because we ignore other

transaction charges, the mean of net insurance income is zero for all scenarios. At the 70%

coverage level, the standard deviation decreases from $2.45/acre to $1.77/acre when moving

from “separately” scenario to “jointly” scenario, and falls to $1.54/acre under “benchmark”

scenario assuming independence. With the survival Gumbel clustering correlation structure,

the minimum observed net income, and value at risk at 1% and 5% levels (VaR(1%) and

VaR(5%), respectively) are all improved by combining the insurance policies across the five

crops, but not as much when compared to “benchmark” scenario. At the 90% coverage level,

the results are consistent to those at the 70% coverage level. These simulation results taken

together show that although there is some diversification when combining multiple crops, it

is not as significant as if risks were independent among the crops. This also demonstrates

that positive correlation exists among the yields of these five US crops.

12The statistics under “separately” scenario are simply the weighted average of the statistics for the five
crops since any diversification effect is ignored.



www.manaraa.com

26

The diversification effect (DE), which is defined as the percentage of the risk diversified

away in “jointly” or “benchmark” scenario relative to “separately” scenario, is presented in

Figure 2.5:

DE =
Ss − Sj
Ss

, (2.26)

where Ss is a statistic (standard deviation, minimum value, or VaR’s) in “separately” scenario

and Sj is the statistic in “jointly” or “benchmark” scenario. For relatively small risks,

such as losses around $2/acre, the difference between the DE under “jointly” scenario and

“benchmark” scenario is insignificant. As the risks become larger, the difference is more

obvious. For example, for losses around $10/acre, the difference is about 10%. For losses

of $50/acre, the difference is about 20%. When losses are more than $100/acre, the DE

difference reaches almost 50%. These results indicate that diversifying risks across multiple

crops becomes more difficult as the size of the loss increases. This is due to lower-tail

dependence among the crop yields.

Similar results are found for the diversification effect across the five crops in China.

Risks diminish by insuring the crops jointly. However, just as in the United States, the

diversification effect is not as significant as if risks were independent among crops. This

again demonstrates the existence of positive correlation and systemic risk of crop yields

within a country. The same pattern of diversification effect is also found in China; that is,

losses are more difficult to diversify when they are larger.

2.5.2 Diversification Effect across Countries

We now compare the net insurance loss under three scenarios: (a) insuring the crops

in the United States and China separately (separately); (b) insuring the crops in these two

countries jointly assuming the estimated correlation structure (jointly); and (c) insuring
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Figure 2.5 Diversification Effect (DE) Achieved by Combining Insurance Contracts
across Multiple Crops in the US Using Survival Gumbel Clustering

them jointly assuming independence of crop yields between the two countries (benchmark).

Recall that two kinds of the nesting copulas (Gaussian and Frank) are used to model the

between-country correlation. Along with the two kinds of cluster copulas, there are 4 (2 *

2) different copula models for the whole correlation structure of all the crop yield variables

in the two countries. We report the results observed from the survival Gumbel clustering

and Gaussian nesting model. Table 2.3 and Figure 2.6 show the statistics of the distribution

of net insurance income and the diversification effect, respectively. Results from the other

models are consistent.

The results show that systemic risk is significantly reduced by diversifying across the

two countries. At the 70% coverage level, the standard deviation falls from $1.46/acre

to $1.09/acre. The minimum observed net income is increased from a loss of $37.40/acre
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Table 2.3 Simulated Distribution of Net Insurance Income ($/acre) over the US and
China Using Survival Gumbel Clustering and Gaussian Nesting

Std Min VaR(1%) VaR(5%)
70% Coverage Level

Separately 1.46 -37.40 -5.93 -1.70
Jointly 1.09 -23.50 -4.61 -1.47

Benchmark 1.04 -24.47 -4.22 -1.43
90% Coverage Level

Separately 8.16 -104.13 -34.93 -15.03
Jointly 6.02 -64.30 -23.39 -11.89

Benchmark 5.82 -61.12 -22.38 -11.28

to a loss of $23.50/acre. The value at risk at 1% (5%) of net income is improved from

a loss of $5.93/acre ($1.70/acre) to a loss of $4.61/acre ($1.47/acre). Similar results are

obtained at the 90% coverage level. Most striking is that the diversification effect across

the countries is comparable to that in the benchmark case of independence. In addition,

the diversification effect remains significant no matter how large the yield losses are. Unlike

the results from diversifying across crops within a country, diversifying across countries has

removed the systemic nature — both positive correlation and lower-tail dependence — of

the risks associated with crop yields.

Another thing to note is that the results do not vary significantly across the different

copula models. The only difference is that models with the Clayton clustering imply a larger

maximum net loss than models with the survival Gumbel clustering. However, the difference

tends to disappear when looking at the diversification effect. This robustness suggests that

the results are quite stable across the different copula modeling methods. This confirms the

reliability of the estimated correlation structure as well as the diversification effect.
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Figure 2.6 Diversification Effect (DE) Achieved by Combining Insurance Contracts
across the US and China Using Survival Gumbel Clustering and Gaussian
Nesting

2.6 Comparison among Models

Although the results of the diversification effect show robustness across the different cop-

ula models, it is worthwhile to compare the models in terms of how they fit the historical

data. Table 2.4 summarizes the log-likelihood and AIC/BIC values of the different models. It

shows that when survival Gumbel clustering is applied to model the within-country correla-

tion, Gaussian nesting is slightly superior to Frank nesting in modeling the between-country

correlation. However, if Clayton clustering is used to model the within-country correlation,

Frank nesting is a better choice for the between-country correlation. Overall, the survival

Gumbel clustering and Gaussian nesting model provides the best fit.
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Table 2.4 Goodness-of-fit Statistics of Alternative Hierarchical Kendall Copula
Models

Log-lik. # of Par. AIC BIC
(Survival Gumbel, Gaussian) 836.50 95 -1482.99 -1346.77

(Survival Gumbel, Frank) 836.49 95 -1482.99 -1346.76
(Clayton, Gaussian) 713.53 95 -1237.05 -1100.83

(Clayton, Frank) 714.34 95 -1238.68 -1102.46

2.7 Sensitivity Analysis for the Selection of the Nesting Copula

To rule out the possibility that the selection of the nesting copula has a significant effect

on the estimated diversification effect, we model the between-country correlation with nesting

copulas that allow for lower-tail dependence. The empirical results are then compared to

the results obtained before using nesting copulas with no tail dependence.

Results from the survival Gumbel clustering and survival Gumbel nesting model are

reported in Table 2.5. Even when using the survival Gumbel nesting copula that allows for

lower-tail dependence, the simulated statistics and diversification effect in “jointly” scenario

are comparable to “benchmark” scenario. Consistent results are found for the Clayton

clustering and Clayton nesting model.

Table 2.5 Simulated Distribution of Net Insurance Income ($/acre) over the US and
China Using Survival Gumbel Clustering and Survival Gumbel Nesting

Std Min VaR(1%) VaR(5%)
70% Coverage Level

Separately 1.46 -37.40 -5.93 -1.70
Jointly 1.13 -22.47 -4.77 -1.47

Benchmark 1.04 -24.47 -4.22 -1.43
90% Coverage Level

Separately 8.16 -104.13 -34.93 -15.03
Jointly 6.01 -60.49 -23.67 -11.79

Benchmark 5.82 -61.12 -22.38 -11.28
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The sensitivity analysis suggests that results obtained before are quite resilient to alter-

native nesting copulas. When using a nesting copula that allows for lower-tail dependence, a

similar diversification effect is found. This confirms the assumption that no tail dependence

exists for the between-country correlation.

2.8 Policy Implications

To the best of our knowledge there are no crop insurance companies operating in both

China and the US. However, reinsurance companies operate on a worldwide basis and could

be used to eliminate residual systemic risk. In order to evaluate the practical implications

of our results, we ran a simulation where the reinsurance company paid all losses in excess

of five times the premium on the 180 million crop acres in the ten US states and 200 million

crop acres in the ten Chinese provinces. The fair value of this reinsurance is $0.39 per acre

for the US and $0.16 per acre for China. The fair reinsurance premium for both countries

is $102.2 million. The average gross written premium for the top ten reinsurance companies

in 2012 was $15.5 billion. The addition of a new $102.2 million premium to the average of

these reinsurers would result in only a 0.659% increase in the total book value. This would

not represent a significant increase in total exposure.

2.9 Conclusions

Systemic risk in crop yields has been a long-standing problem in agriculture. The sys-

temic risk has been hard to diversify due to the “state-dependent” correlations among crop

yields. The correlations are stronger when crop losses are greatest which is when diver-

sification opportunities are most needed. Consequently, private insurers have to rely on

Government reinsurance. This study provides a potential solution for this problem. We

look at the effectiveness of diversifying systemic risk across multiple crops and countries. A
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hierarchical Kendall copula (HKC) model is applied to estimate the correlation structure of

the yield variables. The HKC is superior in that it achieves both flexibility and parsimony in

modeling correlations. The flexibility makes the HKC model appropriate to represent various

correlation structures precisely. This can be useful in modeling the complicated correlation

structure among crop yields. The parsimony of the HKC makes it computationally efficient

in modeling high-dimensional correlation structure. However, the flexibility of the HKC may

raise questions regarding about the choice of the best model. Therefore, several alternative

HKC models with different building blocks are evaluated. There is no significant difference

across the models in terms of the key diversification results. The results show that systemic

crop yield risks can been removed and that complete diversification can be achieved.

The copula-based correlation modeling proposed in this study can also be applied in other

financial areas to develop risk management tools and insurance products for both agricultural

and non-agricultural applications. The copula model separates the marginal distributions

and the correlation of joint variables. Thus, the model can be applied to variables with

arbitrary marginal distributions. The flexibility and parsimony of the copula model also

ensure that it can represent different kinds of correlation structures among potentially high

dimensional variables.
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2.10 Appendix

Table 2.6 Simulated Distribution of Net Insurance Income ($/acre) over Multiple
Crops in the US Using Clayton Clustering

Std Min VaR(1%) VaR(5%)
70% Coverage Level

Separately 2.95 -103.64 -10.74 -1.87
Jointly 2.41 -98.46 -7.42 -1.71

Benchmark 1.76 -50.75 -6.52 -1.72
90% Coverage Level

Separately 12.97 -180.92 -53.48 -25.32
Jointly 10.44 -175.69 -42.40 -19.38

Benchmark 8.02 -90.28 -32.08 -15.45

Table 2.7 Simulated Distribution of Net Insurance Income ($/acre) over Multiple
Crops in China Using Survival Gumbel Clustering

Std Min VaR(1%) VaR(5%)
70% Coverage Level

Separately 1.75 -35.89 -8.07 -1.92
Jointly 1.17 -31.06 -4.94 -1.72

Benchmark 0.89 -13.49 -3.78 -1.70
90% Coverage Level

Separately 8.89 -94.90 -36.25 -17.80
Jointly 6.79 -86.90 -29.17 -12.24

Benchmark 4.21 -34.73 -14.43 -8.14
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Figure 2.7 Diversification Effect (DE) Achieved by Combining Insurance Contracts
across Multiple Crops in the US Using Clayton Clustering

Table 2.8 Simulated Distribution of Net Insurance Income ($/acre) over Multiple
Crops in China Using Clayton Clustering

Std Min VaR(1%) VaR(5%)
70% Coverage Level

Separately 2.54 -96.40 -8.83 -1.85
Jointly 1.98 -80.73 -5.32 -1.75

Benchmark 1.24 -30.36 -4.66 -1.81
90% Coverage Level

Separately 9.87 -180.13 -38.66 -19.02
Jointly 7.66 -163.15 -29.10 -12.82

Benchmark 4.68 -52.27 -15.41 -8.72



www.manaraa.com

35

Figure 2.8 Diversification Effect (DE) Achieved by Combining Insurance Contracts
across Multiple Crops in China Using Survival Gumbel Clustering

Table 2.9 Appendix D1. Simulated Distribution of Net Insurance Income ($/acre)
over the US and China Using Clayton Clustering and Gaussian Nesting

Std Min VaR(1%) VaR(5%)
70% Coverage Level

Separately 2.19 -89.25 -6.33 -1.73
Jointly 1.44 -51.44 -4.89 -1.53

Benchmark 1.55 -47.09 -4.80 -1.51
90% Coverage Level

Separately 9.00 -169.18 -35.50 -15.97
Jointly 6.20 -100.01 -23.69 -11.66

Benchmark 6.42 -110.10 -24.08 -11.81
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Figure 2.9 Diversification Effect (DE) Achieved by Combining Insurance Contracts
across Multiple Crops in China Using Clayton Clustering

Table 2.10 Simulated Distribution of Net Insurance Income ($/acre) over the US
and China Using Survival Gumbel Clustering and Frank Nesting

Std Min VaR(1%) VaR(5%)
70% Coverage Level

Separately 1.46 -37.40 -5.93 -1.70
Jointly 1.13 -25.32 -4.63 -1.44

Benchmark 1.04 -24.47 -4.22 -1.43
90% Coverage Level

Separately 8.16 -104.13 -34.93 -15.03
Jointly 6.05 -60.83 -24.01 -11.68

Benchmark 5.82 -61.12 -22.38 -11.28
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Figure 2.10 Diversification Effect (DE) Achieved by Combining Insurance Contracts
across the US and China Using Clayton Clustering and Gaussian Nest-
ing

Table 2.11 Simulated Distribution of Net Insurance Income ($/acre) over the US
and China Using Clayton Clustering and Frank Nesting

Std Min VaR(1%) VaR(5%)
70% Coverage Level

Separately 2.19 -89.25 -6.33 -1.73
Jointly 1.35 -47.25 -4.83 -1.48

Benchmark 1.55 -47.09 -4.80 -1.51
90% Coverage Level

Separately 9.00 -169.18 -35.50 -15.97
Jointly 6.10 -81.86 -23.43 -11.65

Benchmark 6.42 -110.10 -24.08 -11.81
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Figure 2.11 Diversification Effect (DE) Achieved by Combining Insurance Contracts
across the US and China Using Survival Gumbel Clustering and Frank
Nesting

Table 2.12 Simulated Distribution of Net Insurance Income ($/acre) over the US
and China Using Clayton Clustering and Clayton Nesting

Std Min VaR(1%) VaR(5%)
70% Coverage Level

Separately 2.19 -89.25 -6.33 -1.73
Jointly 1.37 -46.23 -4.68 -1.48

Benchmark 1.55 -47.09 -4.80 -1.51
90% Coverage Level

Separately 9.00 -169.18 -35.50 -15.97
Jointly 6.22 -91.29 -23.55 -11.71

Benchmark 6.42 -110.10 -24.08 -11.81
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Figure 2.12 Diversification Effect (DE) Achieved by Combining Insurance Contracts
across the US and China Using Clayton Clustering and Frank Nesting
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CHAPTER 3. FARMLAND INVESTMENT

CHARACTERISTIC FROM A FORWARD-LOOKING

PERSPECTIVE: AN EXPLANATION FOR THE HIGH

RETURN-LOW RISK PARADOX

3.1 Introduction

Farmland portfolios have been shown to exhibit high expected returns, low risk, diversi-

fication benefits, and an inflation-hedge ability. Kaplan (1985) showed that farmland asset

class had equity-like return, bond-like volatility, and a low return correlation with traditional

asset classes. The author also indicated that farmland returns were positively correlated with

the CPI. Barry (1980) found that farmland returns added mostly nonsystemic risk to a well-

diversified portfolio of stocks and bonds. More recent studies, including Irwin, Forster, and

Sherrick (1988), Hennings, Sherrick, and Barry (2005), Noland et al. (2011), Sherrick, Mal-

lory, and Hopper (2013), and Baker, Boehlje, and Langemeier (2014) among others, found

similar results in terms of the superior characteristics of farmland returns.

With changing economic conditions, the expected farmland return will vary over time

(Bjornson, 1995). As a result, past performance will not be an indicator of future perfor-

mance. To the best of our knowledge, this feature of farmland returns has been ignored by

the literature. One reason that previous studies on farmland portfolio performance did not

account for time-varying expected returns is that they were performed under the Markowitz’s

mean-variance (M-V) framework (Markowitz, 1968). The M-V model requires the mean and
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variance-covariance of asset returns as model inputs and does not allow the expected return

to vary over time. These inputs are usually obtained from historical sample statistics.

Moss, Featherstone, and Baker (1987) provide evidence showing that, unlike stock as-

set returns, farmland asset returns are correlated over time. The authors also indicate

that failing to account for this autocorrelation may result in inappropriate estimates of the

variance-covariance of asset returns. The Moss et al. research accounts for autocorrelation

and shows the implication of this autocorrelation on multi-period investments. However,

they assume constant expected return by imposing steady state initial conditions on the

asset return variables.

The objective of this article is to account for both autocorrelation and time-varying

expected return for the modeling of multivariate farmland returns and to use the model

to make forward-looking estimations and predictions of farmland portfolio investment risk

and return. Both nominal and real returns (inflation excluded) are considered. Time-series

techniques are used to model individual land return series. Correlations among multiple

return series are estimated by copulas (Sklar, 1959). An advantage of using copulas is that

marginal distributions are not limited to normality and can thus be extended to allow for

potential fat tails existing in farmland returns.

The results suggest that the forward-looking farmland investment risk-return profile is

significantly different from the risk and return observed historically. As of July 2017, the

expected return is low in the short term, and it then recovers over a longer period. It takes

multiple years for the expected return to reach the long-term equilibrium. The forward-

looking expected return varies across different holding periods and the large average return

level observed historically can only be attained through long-term investments. Also, because

of autocorrelation in the return series, the diversification effect across time is much smaller

than if the annual returns were independent. As a result, the amount of risk involved in

long-term investment is considerably larger than the historical sample volatility. This shows
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that while superior return can be expected through long-term investments, the risk involved

in the long holding period is also substantial. These findings may help explain the “high

return and low risk” puzzle in farmland investment and provide potential investors and

policymakers with a better understanding of the characteristics of this non-traditional asset

class.

3.2 Empirical Framework

3.2.1 Capitalization Theory

Assuming a constant discount rate and expected growth rate, the relationship between

cash rents and land values can be represented by the capitalization model (Featherstone,

Taylor, and Gibson, 2017).

Lt = Ct/(r − g), (3.1)

where Lt is the land value at time t, Ct the cash rent to land at time t, r the discount rate,

and g the income growth rate. The holding period return from owning land can be calculated

as

Rt =
Lt − Lt−1 + Ct−1

Lt−1

=
Lt
Lt−1

− 1 + r − g (3.2)

The annual growth rate of farmland prices ( Lt
Lt−1
− 1) is significantly autocorrelated as

shown by Lence (2014). Therefore, it is reasonable to assume that farmland returns, accord-

ing to equation (3.2), are also correlated over time. This assumption is consistent with the

empirical observations provided by Moss, Featherstone, and Baker (1987). In this article,

the autocorrelation in farmland return series is accounted for using time-series techniques.
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3.2.2 Time-Series Models

Time-series models have long been used in describing economic and financial data (Cochrane,

2005; Tsay, 2005; Adhikari, Ratnadip, and Agrawal, 2013). The autoregressive-moving-

average (ARMA) process (Box et al., 2015) is particularly useful for modeling time-series

data and for predicting future values based on past observations. The ARMA model accounts

for potential autocorrelation in the series and allows for time-varying expected values.

Defining the lag operator L as Lxt = xt−1, an ARMA(p,q) process can be written as

(1−
p∑
i=1

φiL
i)yt = (1 +

q∑
j=1

θjL
j)εt, (3.3)

or φ(L)yt = θ(L)εt, where φ(·) and θ(·) are pth and qth lag polynomials respectively.

An appropriate ARMA model for a specific time-series dataset can be selected and esti-

mated by Box-Jenkins methodology (Box et al., 2015). The methodology follows a three-step

procedure: model identification, parameter estimation, and diagnostic checking. Specifically,

the orders p and q of an ARMA (p, q) model are first tentatively selected. The parameters

of the model are then estimated from the data. Finally, diagnostic tests are performed to

check the adequacy of the estimated model in describing the data. This three-step procedure

is iterated until the satisfactory model is identified.

3.2.3 Copulas

Correlations among multiple time series can be modeled by copulas. Copulas were first

introduced by Sklar (1959). Sklar’s theorem states that if F is an arbitrary k-dimensional

joint continuous distribution function, then the associated copula is unique and defined as a

continuous function C : [0, 1]k → [0, 1] that satisfies the equation

F (x1, . . . , xk) = C [F1 (x1) , . . . , Fk(xk)] , x1, . . . , xk ∈ R, (3.4)
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where F1(x1), . . . , Fk(xk) are the respective marginal distributions. Let c denote the density

function of the copula C, which can be described as

c(u1, . . . , uk) =
∂kC(u1, . . . , uk)

∂u1 · · · ∂uk
, (3.5)

There are different basic parametric copula families. The most frequently used are elliptical

copulas and Archimedean copulas (Power, Vedenov, and Hong, 2009; Cooper et al., 2012).

The standard Gaussian copula from the elliptical family is used in this article.

The Gaussian copula takes the form of

CN (u1, . . . , uk | Σ) = ΦΣ

[
Φ−1(u1), . . . ,Φ−1(uk)

]
, (3.6)

where ΦΣ is a k-dimensional normal distribution with zero mean and correlation matrix Σ,

and Φ−1 is the inverse distribution function of the standard normal distribution.

3.3 Empirical Application

Our dataset consists of annual state-level nominal cash rents and land values for cropland

in 15 major agricultural producing states in the United States. The dataset spans from 1967

to 2015. All the data are taken from the USDA National Agricultural Statistics Service

(NASS) database. The data were collected by the NASS in annual surveys on cash rents

and cropland values. Real cash rents and land values are calculated by dividing the nominal

values by the corresponding consumer price index. The annual rate of return is calculated

as the sum of cash rents and capital gain divided by land value1.

Each of the marginal return series is first modeled using time-series techniques. The

correlation structure of the residuals from the marginal time series is then constructed by

1Changes in the portion of rented farmland may impose bias on the cash rent data. However, as the
landowners who rent out farmland account for the majority of all landowners in the US (Zhang, 2015), it
seems unlikely that the potential bias can render the analysis in this article invalid.
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copulas. A Ljung-Box test (Ljung and Box, 1978) is used to check if autocorrelation exists

in the individual return series. The test results indicate that the null hypothesis is rejected

for both the nominal and real return series in all the 15 states. This indicates that there are

significant autocorrelations for the return series. The individual return series are fitted using

four candidate models, namely, ARMA(1,1), AR(1), MA(1), and white noise models 2. The

Student’s t distribution is used to account for potentially heavy tails. If the estimated degree

of freedom of the Student’s t error distribution is greater than 10, a normal distribution is

used. The Bayesian Information Criterion (BIC) is used to select the best model. Model

sufficiency is tested by performing one-sample Kolmogorov-Smirnov (K-S) goodness-of-fit

test on the standardized residuals. The p-value from the K-S test is greater than 5% for

all the return series; this confirms the fitness of the residual distributions. A Ljung-Box

test is performed again on the residuals; this shows that there is no autocorrelation in the

residual series. Table 3.1 presents fitted time-series model for each of the return series. The

correlation structure of the residuals is estimated by the Gaussian copula using maximum

likelihood 3.

With estimated copula models and marginal time series, an optimal investment portfolio

can be constructed by the following procedure:

(1) A sample of the standardized residuals is simulated from the copula model.

(2) Individual returns for the next period are projected using the simulated residuals and

the respective marginal time series.

(3) The portfolio return is calculated as the weighted average of individual returns.

(4) Portfolio weights are optimized by maximizing the portfolio return with a given risk level.

2Unit root is checked for all the return series using Augmented Dickey Fuller (ADF) test. The null
hypothesis is rejected at the 5% significance level for 13 of the 15 nominal return series, and at the 10%
significance level for all the 15 nominal return series. The null hypothesis is rejected at the 5% significance
level for all the 15 real return series. Therefore, we assume no unit root for the return series.

3To account for any potential tail dependence, Student’s t copula is also used as an alternative model to
estimate the correlations. There is no significant impact on investment portfolio’s risk-return profile.
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Table 3.1 Fitted Time-Series Models for Farmland Returns

Nominal Return Real Return
Model Constant Parameter Model Constant Parameter

Arkansas AR(1) 0.047 0.610 AR(1) 0.038 0.551
Illinois AR(1) 0.059 0.567 AR(1) 0.043 0.549
Indiana AR(1) 0.036 0.744 AR(1) 0.028 0.718

Iowa AR(1) 0.048 0.678 AR(1) 0.035 0.687
Kansas AR(1) 0.037 0.676 AR(1) 0.025 0.684

Louisiana AR(1) 0.041 0.671 AR(1) 0.042 0.500
Michigan AR(1) 0.037 0.684 AR(1) 0.028 0.623
Minnesota AR(1) 0.034 0.761 AR(1) 0.024 0.780
Mississippi AR(1) 0.029 0.772 AR(1) 0.031 0.663
Missouri AR(1) 0.063 0.586 AR(1) 0.052 0.535

North Dakota AR(1) 0.055 0.666 AR(1) 0.041 0.659
Ohio AR(1) 0.049 0.607 AR(1) 0.037 0.597

South Dakota AR(1) 0.082 0.561 AR(1) 0.065 0.539
Texas AR(1) 0.043 0.640 AR(1) 0.027 0.602

Wisconsin AR(1) 0.033 0.764 AR(1) 0.027 0.719

3.3.1 Risk-return Profile of Nominal Farmland Returns

Future farmland asset returns are simulated in order to construct the forward-looking

optimal portfolios. Table 3.2 shows the projected mean and standard deviation of state-level

nominal returns with different holding periods, as well as the historical sample mean and

standard deviation. Due to the recent poor performance, the one-year-out expected return

is much lower than the historical average. When we extend the holding period, the expected

return recovers. This recovery speed varies across different states. The expected return

exceeds the historical level in a ten-year holding period for Louisiana. For other states, the

expected return within ten years is lower than the historical average. The standard deviation

of the returns is either higher or lower with a longer holding period. This is because a

longer period entails larger uncertainty with the existence of autocorrelation; however, the

diversification effect over time tends to reduce the total risk within the entire holding period.
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These two offsetting effects cause an ambiguous relationship between volatility and the length

of holding period.

Table 3.2 Statistics of Farmland Nominal Returns in Individual States

Projected - 1Yr Projected - 5Yr Projected - 10Yr Historical
E(r) σ(r) E(r) σ(r) E(r) σ(r) E(r) σ(r)

Arkansas 8.92% 7.30% 10.75% 6.17% 11.33% 5.09% 13.22% 8.94%
Illinois 5.79% 10.96% 10.34% 9.75% 11.83% 7.76% 13.58% 11.26%
Indiana 5.54% 10.49% 9.19% 11.10% 11.11% 10.22% 14.49% 11.71%

Iowa 5.00% 11.95% 9.89% 11.00% 12.04% 9.58% 16.01% 13.57%
Kansas 0.70% 8.86% 5.71% 8.56% 8.08% 7.31% 13.36% 10.48%

Louisiana 9.74% 7.85% 10.97% 7.09% 11.53% 6.08% 10.92% 9.23%
Michigan 4.64% 7.68% 8.14% 7.00% 9.70% 6.11% 12.56% 9.55%
Minnesota 5.35% 11.75% 9.04% 12.45% 11.06% 12.27% 16.66% 13.36%
Mississippi 8.08% 8.20% 9.96% 8.57% 11.03% 8.01% 13.88% 10.51%
Missouri 7.45% 10.08% 11.91% 8.36% 13.39% 6.76% 15.57% 10.68%

North Dakota 3.29% 9.17% 9.71% 8.36% 12.56% 7.18% 17.31% 12.36%
Ohio 5.82% 11.75% 9.66% 11.34% 10.99% 9.72% 13.19% 10.90%

South Dakota 6.95% 14.46% 13.71% 14.38% 15.95% 11.01% 19.34% 11.78%
Texas 7.40% 9.82% 9.75% 8.78% 10.64% 7.45% 10.88% 8.43%

Wisconsin 8.58% 8.07% 10.68% 8.39% 11.81% 7.83% 16.22% 11.85%

Figure 3.1 shows the efficient frontiers of forward-looking farmland portfolio nominal

returns with different holding periods derived from the ARMA-copula model. For a given

risk level, the expected return increases with the holding period. For the minimum-risk

portfolios, the expected returns are 7.34%, 10.05%, and 11.27% for the one-year, five-year,

and ten-year holding periods, respectively4. The minimum risk decreases with a longer

holding period. The minimum volatilities are 5.99%, 5.50%, and 4.68% for the one-year,

five-year, and ten-year holding periods, respectively.

Figure 3.2 compares the efficient frontiers of nominal returns derived from the ARMA-

copula model and from the M-V approach for one-year, five-year, and ten-year holding

periods. The inputs for the M-V approach are a historical sample mean and variance-

4Note we do not take property tax or transaction costs into account.
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Figure 3.1 Efficient frontiers of nominal farmland return with different holding pe-
riods

covariance with the implicit assumption that returns are independent across time. The

expected return based on the M-V approach, is identical across different holding periods. The

standard deviation decreases with a longer holding period, due to diversification over time,

as measured by the square root of the length of the holding period. By contrast, the expected

return, implied by the ARMA-copula model, varies across different holding periods due to the

time-varying expected return. The standard deviation for a longer holding period does not

decrease as much as in the M-V approach because of the autocorrelation in the return series.

These results indicate that the time-varying expected return and autocorrelation in the

return series have important implications on the risk-return profile of farmland investment.

The ARMA-copula results show that the superior performance predicted by the M-V

approach should be treated with caution. First, the high expected return can only be



www.manaraa.com

53

Figure 3.2 Efficient frontiers of nominal farmland return as implied by the ARMA–
copula model and the M-V method

achieved with a long holding period. The graphs in Figure 3.2 show that for a one-year

holding period, the forward-looking expected return is much lower than the M-V approach

implies. The forward-looking expected return is closer to the historical average for a five-

year holding period and becomes comparable for a ten-year holding period. Second, the

forward-looking risk involved in farmland investment is not as low as implied by the M-V

approach for long holding periods. This is because the diversification effect over time is

offset by the autocorrelation in the return series. Figure 3.2 shows that the forward-looking

standard deviation is lower than the M-V value for a one-year holding period; however, it is

higher than the M-V value for the five-year and ten-year holding periods. In summary, from

a forward-looking perspective, while the high expected return can only be achieved with

long-term investment, the risk involved with the long holding period is also relatively high.
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This may explain why farmland assets comprise a small portion of investors’ portfolios, in

spite of the superior historical performance.

3.3.2 Risk-return Profile of Real Farmland Returns

Similar results are observed for real farmland returns. Table 3.3 shows the real-return

statistics for individual states. The one-year-out expected real return is lower than the his-

torical average for all the states except Louisiana. When the holding period is longer, the

expected real return improves, as was the case for the nominal return. For all states except

Louisiana, the expected real return with a ten-year holding period is below the historical

average. The relationship between volatility and the length of holding period is also ambigu-

ous for real returns. While a longer period entails larger uncertainty due to autocorrelation,

the diversification effect over time reduces the overall risk within the entire holding period.

Table 3.3 Statistics of Farmland Real Returns in Individual States

Projected - 1Yr Projected - 5Yr Projected - 10Yr Historical
E(r) σ(r) E(r) σ(r) E(r) σ(r) E(r) σ(r)

Arkansas 7.04% 6.06% 7.87% 4.75% 8.16% 3.83% 8.95% 7.28%
Illinois 3.80% 8.84% 7.05% 7.21% 8.18% 5.73% 9.28% 9.82%
Indiana 3.85% 10.51% 6.28% 12.90% 7.67% 10.37% 10.16% 10.12%

Iowa 3.02% 11.50% 6.74% 11.66% 8.51% 10.10% 11.66% 12.09%
Kansas -1.29% 7.60% 3.00% 7.13% 5.05% 6.24% 9.10% 9.17%

Louisiana 7.69% 7.42% 8.31% 8.99% 8.38% 5.70% 6.66% 7.53%
Michigan 2.93% 6.51% 5.34% 5.70% 6.29% 4.75% 8.27% 8.23%
Minnesota 3.36% 13.00% 6.17% 11.27% 7.75% 11.24% 12.26% 11.57%
Mississippi 6.61% 7.45% 7.95% 6.61% 8.53% 5.71% 9.57% 8.58%
Missouri 5.81% 8.25% 9.00% 6.69% 10.09% 5.14% 11.26% 9.00%

North Dakota 1.25% 8.00% 6.55% 7.21% 9.02% 6.22% 12.96% 10.78%
Ohio 3.95% 10.23% 6.70% 9.08% 7.79% 7.35% 8.87% 9.28%

South Dakota 4.46% 13.32% 10.11% 9.82% 11.97% 8.10% 15.00% 10.58%
Texas 4.82% 7.25% 5.90% 6.40% 6.30% 5.51% 6.65% 7.27%

Wisconsin 6.81% 7.38% 8.07% 7.01% 8.76% 6.45% 11.86% 10.35%
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Figure 3.3 shows the efficient frontiers of forward-looking real returns with different hold-

ing periods. For a given risk level, the expected real return increases with the holding period.

For the minimum-risk portfolios, the expected returns are 5.08%, 7.00%, and 8.48% for the

one-year, five-year, and ten-year holding periods, respectively. The minimum risk decreases

with a longer holding period. The minimum volatilities are 4.87%, 4.18%, and 3.58% for

the one-year, five-year, and ten-year holding periods, respectively. These observations are

consistent with what has been observed for nominal returns.

Figure 3.3 Efficient frontiers of real farmland return with different holding periods

Figure 3.4 compares the forward-looking efficient frontiers of real farmland return and

the efficient frontiers as implied by the M-V approach. As was true with nominal returns,

the forward-looking expected real return varies across different holding periods. For a given

expected return level, volatility decreases for longer holding periods, but to a lesser degree as

in the M-V approach. This reduced time diversification effect is due to the autocorrelation
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in the return series. These results indicate that the time-varying expected return and au-

tocorrelation in the return series have similar implications on the risk-return profile for real

returns as for nominal returns. That is, while the superior expected return predicted by the

M-V approach can only be attained through a long holding period from a forward-looking

perspective, the risk involved in the long holding period is much higher than implied by the

M-V approach.

Figure 3.4 Efficient frontiers of real farmland return as implied by the ARMA-copula
model and the M-V method
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3.4 Conclusions

The ARMA-copula model proposed in this article can serve as a tool for forward-looking

farmland portfolio management by taking into account autocorrelation and time-varying

patterns in farmland returns. The optimal portfolio is constructed based on projected future

returns instead of historical values. We show that the forward-looking risk-return profile

is significantly different than the historical profile for both nominal and real returns. The

results shed light on the high return-low risk paradox in the existing land value literature.

The results may help farmland investors gain a better understanding of expected farmland

returns and to optimize their portfolios for better future performance.
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3.5 Appendix

Table 3.4 Optimal Forward-looking Farmland Portfolio Weights for One-year Hold-
ing Period with Nominal Returns

E(r) 7.34% 8.00% 8.50% 9.00% 9.30% 9.62%
σ(r) 5.99% 6.02% 6.09% 6.26% 6.53% 7.81%

Arkansas 0.21 0.27 0.32 0.40 0.43 0.00
Illinois 0.00 0.00 0.00 0.00 0.00 0.00
Indiana 0.00 0.00 0.00 0.00 0.00 0.00

Iowa 0.00 0.00 0.00 0.00 0.00 0.00
Kansas 0.00 0.00 0.00 0.00 0.00 0.00

Louisiana 0.14 0.16 0.19 0.31 0.47 1.00
Michigan 0.14 0.05 0.00 0.00 0.00 0.00
Minnesota 0.00 0.00 0.00 0.00 0.00 0.00
Mississippi 0.10 0.12 0.13 0.05 0.00 0.00
Missouri 0.00 0.00 0.00 0.00 0.00 0.00

North Dakota 0.12 0.08 0.04 0.00 0.00 0.00
Ohio 0.00 0.00 0.00 0.00 0.00 0.00

South Dakota 0.00 0.00 0.00 0.00 0.00 0.00
Texas 0.20 0.18 0.16 0.07 0.00 0.00

Wisconsin 0.09 0.14 0.16 0.17 0.09 0.00
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Table 3.5 Optimal Forward-looking Farmland Portfolio Weights for Five-year Hold-
ing Period with Nominal Returns

E(r) 10.05% 10.70% 11.40% 12.10% 12.80% 13.48%
σ(r) 5.50% 5.60% 6.05% 7.29% 9.18% 11.46%

Arkansas 0.44 0.56 0.62 0.46 0.17 0.00
Illinois 0.00 0.00 0.00 0.00 0.00 0.00
Indiana 0.00 0.00 0.00 0.00 0.00 0.00

Iowa 0.00 0.00 0.00 0.00 0.00 0.00
Kansas 0.00 0.00 0.00 0.00 0.00 0.00

Louisiana 0.10 0.12 0.10 0.00 0.00 0.00
Michigan 0.14 0.00 0.00 0.00 0.00 0.00
Minnesota 0.00 0.00 0.00 0.00 0.00 0.00
Mississippi 0.00 0.00 0.00 0.00 0.00 0.00
Missouri 0.00 0.00 0.00 0.07 0.13 0.00

North Dakota 0.14 0.08 0.00 0.00 0.00 0.00
Ohio 0.00 0.00 0.00 0.00 0.00 0.00

South Dakota 0.00 0.06 0.24 0.47 0.70 1.00
Texas 0.16 0.11 0.00 0.00 0.00 0.00

Wisconsin 0.02 0.07 0.04 0.00 0.00 0.00

Table 3.6 Optimal Forward-looking Farmland Portfolio Weights for Ten-year Hold-
ing Period with Nominal Returns

E(r) 11.27% 12.00% 13.00% 14.00% 15.00% 15.85%
σ(r) 4.68% 4.79% 5.37% 6.39% 7.78% 9.50%

Arkansas 0.51 0.58 0.53 0.27 0.00 0.00
Illinois 0.02 0.00 0.00 0.00 0.00 0.00
Indiana 0.00 0.00 0.00 0.00 0.00 0.00

Iowa 0.00 0.00 0.00 0.00 0.00 0.00
Kansas 0.00 0.00 0.00 0.00 0.00 0.00

Louisiana 0.13 0.11 0.00 0.00 0.00 0.00
Michigan 0.11 0.00 0.00 0.00 0.00 0.00
Minnesota 0.00 0.00 0.00 0.00 0.00 0.00
Mississippi 0.00 0.00 0.00 0.00 0.00 0.00
Missouri 0.00 0.00 0.14 0.26 0.34 0.00

North Dakota 0.12 0.10 0.01 0.00 0.00 0.00
Ohio 0.00 0.00 0.00 0.00 0.00 0.00

South Dakota 0.00 0.13 0.30 0.47 0.66 1.00
Texas 0.12 0.08 0.01 0.00 0.00 0.00

Wisconsin 0.00 0.00 0.00 0.00 0.00 0.00
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Table 3.7 Optimal Farmland Portfolio Weights as Implied by the M-V Approach
with Nominal Returns

E(r) 11.82% 14.00% 16.00% 17.00% 18.00% 19.34%
σ(r) 7.82% 8.26% 9.21% 9.86% 10.60% 11.78%

Arkansas 0.22 0.35 0.30 0.27 0.20 0.00
Illinois 0.11 0.00 0.00 0.00 0.00 0.00
Indiana 0.00 0.00 0.00 0.00 0.00 0.00

Iowa 0.00 0.00 0.00 0.00 0.00 0.00
Kansas 0.05 0.00 0.00 0.00 0.00 0.00

Louisiana 0.04 0.00 0.00 0.00 0.00 0.00
Michigan 0.00 0.00 0.00 0.00 0.00 0.00
Minnesota 0.00 0.00 0.00 0.00 0.00 0.00
Mississippi 0.00 0.00 0.00 0.00 0.00 0.00
Missouri 0.00 0.00 0.00 0.00 0.00 0.00

North Dakota 0.00 0.00 0.00 0.00 0.00 0.00
Ohio 0.00 0.00 0.00 0.00 0.00 0.00

South Dakota 0.00 0.27 0.52 0.65 0.76 1.00
Texas 0.58 0.38 0.18 0.08 0.00 0.00

Wisconsin 0.00 0.00 0.00 0.00 0.04 0.00

Table 3.8 Optimal Forward-looking Farmland Portfolio Weights for One-year Hold-
ing Period with Real Returns

E(r) 5.08% 6.00% 6.50% 7.00% 7.40% 7.69%
σ(r) 4.87% 4.94% 5.05% 5.28% 5.93% 7.42%

Arkansas 0.23 0.32 0.37 0.44 0.39 0.00
Illinois 0.00 0.00 0.00 0.00 0.00 0.00
Indiana 0.00 0.00 0.00 0.00 0.00 0.00

Iowa 0.00 0.00 0.00 0.00 0.00 0.00
Kansas 0.00 0.00 0.00 0.00 0.00 0.00

Louisiana 0.07 0.11 0.14 0.24 0.57 1.00
Michigan 0.10 0.00 0.00 0.00 0.00 0.00
Minnesota 0.00 0.00 0.00 0.00 0.00 0.00
Mississippi 0.10 0.13 0.14 0.10 0.00 0.00
Missouri 0.00 0.00 0.00 0.00 0.00 0.00

North Dakota 0.16 0.10 0.03 0.00 0.00 0.00
Ohio 0.00 0.00 0.00 0.00 0.00 0.00

South Dakota 0.00 0.00 0.00 0.00 0.00 0.00
Texas 0.26 0.21 0.18 0.05 0.00 0.00

Wisconsin 0.08 0.14 0.15 0.17 0.04 0.00
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Table 3.9 Optimal Forward-looking Farmland Portfolio Weights for Five-year Hold-
ing Period with Real Returns

E(r) 7.00% 8.00% 9.00% 9.40% 9.80% 10.11%
σ(r) 4.18% 4.38% 5.63% 6.68% 8.16% 9.82%

Arkansas 0.42 0.62 0.32 0.07 0.00 0.00
Illinois 0.02 0.00 0.00 0.00 0.00 0.00
Indiana 0.00 0.00 0.00 0.00 0.00 0.00

Iowa 0.00 0.00 0.00 0.00 0.00 0.00
Kansas 0.00 0.00 0.00 0.00 0.00 0.00

Louisiana 0.03 0.05 0.00 0.00 0.00 0.00
Michigan 0.11 0.00 0.00 0.00 0.00 0.00
Minnesota 0.00 0.00 0.00 0.00 0.00 0.00
Mississippi 0.06 0.05 0.00 0.00 0.00 0.00
Missouri 0.00 0.00 0.35 0.49 0.28 0.00

North Dakota 0.12 0.00 0.00 0.00 0.00 0.00
Ohio 0.00 0.00 0.00 0.00 0.00 0.00

South Dakota 0.00 0.11 0.33 0.44 0.72 1.00
Texas 0.22 0.09 0.00 0.00 0.00 0.00

Wisconsin 0.02 0.08 0.00 0.00 0.00 0.00

Table 3.10 Optimal Forward-looking Farmland Portfolio Weights for Ten-year Hold-
ing Period with Real Returns

E(r) 8.48% 9.00% 10.00% 11.00% 11.50% 11.97%
σ(r) 3.58% 3.69% 4.40% 5.65% 6.76% 8.10%

Arkansas 0.71 0.60 0.31 0.00 0.00 0.00
Illinois 0.00 0.00 0.00 0.00 0.00 0.00
Indiana 0.00 0.00 0.00 0.00 0.00 0.00

Iowa 0.00 0.00 0.00 0.00 0.00 0.00
Kansas 0.00 0.00 0.00 0.00 0.00 0.00

Louisiana 0.17 0.10 0.00 0.00 0.00 0.00
Michigan 0.00 0.00 0.00 0.00 0.00 0.00
Minnesota 0.00 0.00 0.00 0.00 0.00 0.00
Mississippi 0.02 0.00 0.00 0.00 0.00 0.00
Missouri 0.00 0.14 0.42 0.52 0.25 0.00

North Dakota 0.00 0.00 0.00 0.00 0.00 0.00
Ohio 0.00 0.00 0.00 0.00 0.00 0.00

South Dakota 0.07 0.14 0.27 0.48 0.75 1.00
Texas 0.00 0.00 0.00 0.00 0.00 0.00

Wisconsin 0.03 0.02 0.00 0.00 0.00 0.00
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Table 3.11 Optimal Farmland Portfolio Weights as Implied by the M-V Approach
with Real Returns

E(r) 7.62% 8.50% 9.50% 11.00% 13.00% 15.00%
σ(r) 6.33% 6.43% 6.69% 7.38% 8.73% 10.58%

Arkansas 0.29 0.38 0.41 0.40 0.30 0.00
Illinois 0.10 0.04 0.00 0.00 0.00 0.00
Indiana 0.00 0.00 0.00 0.00 0.00 0.00

Iowa 0.00 0.00 0.00 0.00 0.00 0.00
Kansas 0.01 0.00 0.00 0.00 0.00 0.00

Louisiana 0.12 0.01 0.00 0.00 0.00 0.00
Michigan 0.00 0.00 0.00 0.00 0.00 0.00
Minnesota 0.00 0.00 0.00 0.00 0.00 0.00
Mississippi 0.00 0.00 0.00 0.00 0.00 0.00
Missouri 0.00 0.00 0.00 0.00 0.00 0.00

North Dakota 0.00 0.10 0.08 0.02 0.00 0.00
Ohio 0.00 0.00 0.00 0.00 0.00 0.00

South Dakota 0.00 0.02 0.17 0.40 0.64 1.00
Texas 0.47 0.44 0.34 0.18 0.00 0.00

Wisconsin 0.00 0.00 0.00 0.00 0.06 0.00
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CHAPTER 4. PREDICTING FARMLAND ASSET RETURNS

USING CAPITAL MARKET RISK FACTORS

4.1 Introduction

Farmland accounts for over 80 percent of the total value of a typical farmer’s portfolio

(Economic Research Service, 2016). Farmland returns therefore greatly impact the financial

well-being of the nation’s agricultural sector. This important role of farmland assets has

generated a large literature on farmland returns. Barry (1980) first analyzed farmland returns

using market portfolio return as the only risk factor. The author found that farmland assets

added insignificant systematic risk to a well-diversified investment portfolio. Several studies

extended Barry’s work by applying multifactor asset pricing models that included a set of risk

factors beyond market portfolio return (see, among others, Arthur, Carter, and Abizadeh,

1988; Irwin et al., 1988; Bjornson, 1995; Kuethe, Hubbs, Morehart, 2014). The risk factors

are either explicit macroeconomic variables or implicit principle components extracted from

observable variables. Moss and Katchova (2005) summarized the findings on the relationship

between farmland return and market factors, concluding that while farmland assets exhibit

low systematic risk, farmland return is sensitive to several financial market risk factors.

After a decline in 2016, average US farmland value increased slightly in 2017. Farm

income, however, has declined and is still under stress following a record high in 2013. The

relationship between farmland price and the income produced by the farmland can be ex-

pressed by the capitalization model P = I/(r− g), where P represents the farmland price, I

the farmland income, r the discount rate, and g the income growth rate. When the farmland

income is decreasing, an increase in farmland price, according to the capitalization model,
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can potentially be caused by a lowered discount rate. The discount rate represents the op-

portunity cost or required rate of return for investors to invest in farmland. This rate can

be thought of as the risk-free rate plus a risk premium associated with farmland investment.

Given that the risk-free rate has been low after the 2007-09 financial crisis, the decreased

discount rate perhaps indicates that investors now require lower rate of return or risk pre-

mium on farmland investment. The same “low income high asset price” phenomenon has

also been observed in the equity market. The S&P 500 index level has increased significantly

in 2017 as has the price to earnings ratio1. This shows that investors are accepting of a lower

risk premium in equity investments.

At the end of year 2008 when federal funds rate as the traditional monetary policy target

reached its lower bound of zero, the Federal Reserve started to implement a large-scale

asset purchase program by purchasing substantial quantities of medium- and long-maturity

assets. Holdings of the assets by private investors were replaced by short-term, risk-free

bank reserves which increased the total money supply in the economy. Figure 4.1 and 4.2

show the broad money supply (M2) and the money to GDP ratio in the US starting from

2007 respectively. The increased money supply potentially impacted several macroeconomic

factors and potentially changed investor behavior. According to Gagnon et al. (2010), the

first macroeconomic factor being impacted by increased money supply is the risk premium on

the assets that the Fed purchased as well as other related assets via the portfolio balance effect

(Tobin, 1958). By purchasing a particular asset, the Federal Reserve reduces the aggregate

supply for particular assets. In market equilibrium, the risk premium then must adjust to

match aggregate demand with the decreased aggregate supply. In order for investors to

adjust their required rate of return, the expected return on the purchased and other assets

has to fall. As Emmerling et al. (2015) indicate, the purchases by the Federal Reserve bid up

the price and the realized return of the purchased assets, which in turn lowered the expected

1Historical data of the S&P 500 index level, dividend yield, and P/E ratio are available at www.multpl.com
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return of the asset. Investors’ required rate of return therefore has to decline. These effects

are not only imposed on the assets being purchased but also spill over onto other assets

through portfolio rebalancing by investors. Besides the risk premium, the increased money

supply also has impacts on other macroeconomic risk factors such as the interest rate term

spread and corporate credit spread (Gagnon et al., 2010; Gilchrist and Zakrajsek, 2013).

Figure 4.1 Broad money supply (M2) in the US. Source: Board of Governors of the
Federal Reserve System (US)

In this article, we investigate the predictive power of these risk factors for farmland

asset returns. We assume farmland returns follow an autoregressive process with expected

farmland return as the mean value. Investors’ demand drives the expected return towards

required rate of return which is affected by the macroeconomic risk factors. We first examine

three linear models: a univariate time-series model, a one-factor model using capital market

risk premium as the single risk factor2, and a three-factor model taking on additional risk

factors that are also affected by increased money supply. In addition, the forecast accuracy of

the three linear models is compared with that of their artificial neural network counterparts

that use the same predictors. The neural network model imitates the nonlinear, parallel

2This factor is referred to as “excess market return” for the rest of the article.
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Figure 4.2 Broad money supply (M2) as a percentage of total GDP in the US.
Source: World Bank Open Data

information processing structure of human brain network (McNelis, 2005). By allowing

for a more flexible functional relationship between predicted variables and predictors, the

neural network model relaxes the linearity assumption and captures potentially undetected

regularities in asset return movements (White, 1989).

Our study focuses on state-level cropland returns across 15 major agricultural producing

states in the US. The annual land return, spanning the period 1968-2016, is calculated as

the sum of cash rental income and capital appreciation divided by land value. A rolling

estimation forecasting procedure is used to generate forecasts of annual land returns for

each of the 15 states. Each forecast is based on models estimated using the data from

previous 41 years. Forecasts of land returns from 2008 to 2016 are generated and compared

to actual returns. The mean squared error (MSE) is calculated to assess forecast accuracy

for each state. Results indicate that each neural network model provides lower MSE than
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the corresponding linear model for all the states. More importantly, while adding market

risk factors seems not to help for some states using linear models, it becomes helpful and

improves the prediction under the neural network framework.

A formal comparison of the forecast accuracy between different models is conducted

using a paired sample t-test. It turns out that the one-factor model with the excess market

return factor included is the best performing model under both linear and neural network

frameworks. In addition, the one-factor neural network model significantly outperforms its

linear counterpart. These results indicate that the excess market return factor could provide

information that significantly improves farmland return prediction. This may offer help for

farmers to plan future agricultural production and decision makers to resolve agricultural

policy issues given the significant role of farmland assets in the agricultural sector. There

is no empirical evidence, however, that the other two risk factors add useful information to

predict farmland returns.

4.2 Theoretical Framework

Due to the potential autocorrelation in farmland return series (Moss, Featherstone, and

Baker, 1987), we start by assuming farmland return follows an autoregressive process with

lag order 1 (AR(1))3.

Rt − E(R) = β0 + ϕ ∗ [Rt−1 − E(R)] + εt, (4.1)

3ARMA(1,1), AR(1), MA(1), and white noise time-series models were all examined for fitness for the
sample of farmland return series in each of the 15 states selected in this study. The AR(1) model was the
best model for all the 15 states in terms of the Bayesian information criterion (BIC). Model sufficiency was
also confirmed using the Kolmogorov-Smirnov (K-S) test and the Ljung-Box test.
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where Rt represents the farmland return at time t and E(R) represents expected farmland

return. By rearranging equation (4.1) we obtain

Rt = β0 + (1− ϕ) ∗ E(R) + ϕ ∗Rt−1 + εt, (4.2)

We then assume that farmland asset supply is fixed at Qs. Farmland asset is demanded

by farmers to produce crop products and by investors to gain investment returns. Farmers

derive their demand function from expected farmland return, denoted by Qd,f (E(R))4. As

indicated by Frankel and Dickens (1983), investors’ demand for an asset is related to the

expected return of the asset and their risk premium for risky asset investment. Following

this approach, we assume an investor’s demand function for farmland takes the form of

Qd,i(E(R), RP ), where RP is the risk premium associated with farmland investment. Under

equilibrium where total demand equals supply, the following equation holds,

Qs = Qd,f (E(R)) +Qd,i(E(R), RP ). (4.3)

Supposing E(R) can be solved out from equation (4.3), the following equation can be ob-

tained,

E(R) = f(Qs, RP ). (4.4)

For any risky asset investment, a risk premium would be needed to compensate an investor

for holding the risky assets. Excess money supply could change an investor’s risk premium

through the portfolio balance effect. In the absence of data on investors’ risk premium level,

we use realized capital market excess return in the previous period as an indicator for current

risk premium level required by investors. By bidding up asset price, the excess money supply

4Farmland return to farmers who derive income from farming might be different from the return to
investors who collect cash rents. However, empirical evidence (Du, Hennessy, and William, 2007) shows that
the difference is rather small in the long-run.
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increases realized return and reduces investors’ risk premium over future periods (Emmerling

et al., 2015). We then rewrite equation (4.4) as

E(R) = f(Qs, Rm −Rf ), (4.5)

where Rm −Rf is realized excess market return in the previous period.

Substituting equation (4.5) into equation (4.2) we have

Rt = β0 + (1− ϕ) ∗ f(Qs, (Rm −Rf )t−1) + ϕ ∗Rt−1 + εt. (4.6)

Besides the risk premium for risky asset investments, increased money supply has been

shown to have impacts on other macroeconomic risk factors such as the interest rate term

spread and corporate credit spread (Gagnon et al., 2010; Gilchrist and Zakrajsek, 2013). As-

suming an investor’s demand for farmland is also driven by these risk factors, we can rewrite

an investor’s demand function as Qd,i(E(R), RP, γ1, . . . , γn), where γ1, . . . , γn represent the

additional n macroeconomic risk factors. Following this new demand function, equation

(4.5) and (4.6) can then be rewritten as

E(R) = f(Qs, Rm −Rf , γ1, . . . , γn), (4.7)

Rt = β0 + (1− ϕ) ∗ f(Qs, (Rm −Rf )t−1, γ1,t, . . . , γn,t) + ϕ ∗Rt−1 + εt. (4.8)

4.2.1 Models

Three linear models and three artificial neural network models are considered and com-

pared for their predictive ability. The three linear models consist of a univariate time-series

model, a one-factor model, and a three-factor model. The three neural network models use
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exactly the same predictors as the linear models but have a different non-linear functional

form.

The first linear model is built from equation (4.2) by assuming farmland return simply

follows an AR(1) process with a constant expected value,

Rt = β0 + ϕRt−1 + εt, (4.9)

where Rt denotes the farmland return at time t and Rt−1 denotes the farmland return at

time t− 1. For convenience, this model is labeled as Model 1.

The second linear model is derived from equation (4.6) by assuming the farmer’s demand

function Qd,f (· ) and the investor’s demand function Qd,i(· ) are both linear. As a result, the

function f(· ) in equation (4.6) is in a linear form. Denoting the excess market return at

time t as γm,t, the model can be described as

Rt = β0 + ϕRt−1 + βmγm,t−1 + εt. (4.10)

This one-factor linear model is referred to as Model 2.

The third linear model is derived from equation (4.8) by assuming again the farmer’s

demand function and the investor’s demand function are both linear. Function f(· ) is

therefore also linear and two additional risk factors beyond excess market return are included.

The two additional risk factors are the bond term spread (TERM) and the economy-wide

default risk (DEFAULT). The TERM factor is calculated as the difference between ten-year

and one-year Treasury bond yields. The DEFAULT factor is calculated as the difference

between long-term BAA- and AAA-rated corporate bond yields. The model can be written

as

Rt = β0 + ϕRt−1 + βmγm,t−1 + β1γ1,t + β2γ2,t + εt, (4.11)
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where γ1,t denotes the TERM factor and γ2,t the DEFAULT factor at time t. We refer this

three-factor linear model as Model 3.

Neural network models relax the linearity assumption and potentially increase the flexibil-

ity of the demand functions. Similar to linear models, a neural network builds up functional

relationships between a set of input variables and one or more output variables. The dif-

ference between linear models and neural network models is that the neural network model

uses hidden layers to link input and output variables. Input variables are transformed by an

activation function in the hidden layer and then connected to the output variables, in a sim-

ilar way that the human brain processes information. This hidden layer processing method

represents an efficient way to model nonlinear relationships (McNelis, 2005). In addition, it

has been shown that given sufficiently many hidden-layer units, a three-layer (input, output,

and hidden layers) neural network can approximate any continuous functions arbitrarily well

(Bengio, Goodfellow, and Courville, 2015). For a three-layer neural network, each input-layer

variable has a weighted connection to each hidden-layer unit, and each hidden-layer unit has

a weighted connection to the output-layer variable. Using the logistic activation function to

transform the input variables, the generic three-layer neural network model can be formally

written as

nj,t = βj,0 +
i∗∑
i=1

βj,ixi,t, (4.12)

Nj,t = logsig(nj,t) =
1

1 + exp(−nj,t)
, (4.13)

yt = α0 +

j∗∑
j=1

αjNj,t, (4.14)

where y is the output variable, [x1, . . . , xi∗ ] is the vector of input variables, [N1, . . . , Nj∗ ]

is the vector of hidden-layer units, [α0, α1, . . . , αj∗ ] is the vector of weights connecting the
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hidden-layer units to the output variable, and [βj,0, βj,1, . . . , βj,i∗ ] is the vector of weights

connecting input variables to the jth hidden-layer unit.

The neural network models that correspond to the three linear models defined previously

can thus be described as

Rt = α0 +

j∗∑
j=1

αjlogsig(βj,0 + ϕjRt−1) + εt, (4.15)

Rt = α0 +

j∗∑
j=1

αjlogsig(βj,0 + ϕjRt−1 + βj,mγm,t−1) + εt, (4.16)

Rt = α0 +

j∗∑
j=1

αjlogsig(βj,0 + ϕjRt−1 + βj,mγm,t−1 + βj,1γ1,t + βj,2γ2,t) + εt, (4.17)

These three neural network models are labeled as Model 4, Model 5, and Model 6 respectively.

4.3 Empirical Analysis

We focus on annual state-level cropland returns in 15 major agricultural producing states

in the US. The land return is calculated as the sum of cash rental income and capital

appreciation divided by land value. Historical data of the cash rental income and land value

were collected from the USDA National Agricultural Statistics Service (NASS) databases,

spanning from 1968 to 2016. The excess market return data were gathered from the Center

for Research in Security Prices on Kenneth French’s website5. The maturity risk (TERM)

and default risk (DEFAULT) data were obtained from the Federal Reserve Bank of St Louis

database.

5http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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4.3.1 Mean Squared Error

A rolling estimation forecasting procedure is used to generate forecasts of land returns

in 2009-2016 for each state. We generate each forecast based on models estimated using the

data from previous 41 years. That is, we use the data from 1968 to 2008 to generate forecast

of land return in 2009, the data from 1969 to 2009 to generate forecast for 2010, and so on.

The Mean Squared Error (MSE) is used as a measure to assess forecast accuracy of different

models:

MSE =
1

n

n∑
i=1

(R̂i −Ri)
2, (4.18)

where n is the total number of forecasts generated, R̂i is the ith predicted return, and Ri is

the ith realized return.

Table 4.1 reports the MSE of predicted farmland returns for each of the 15 states using

different models. Among the linear models (Model 1 through Model 3), adding market

factors improves forecast accuracy for eight out of the 15 states. Specifically, the one-factor

model provides the most accurate prediction for seven states and the three-factor model

outperforms the one-factor model for only one state among the eight states for which market

factors improve the prediction. For the remaining seven states, the best linear model is the

univariate time-series model.

All the neural network models provide lower MSE than their linear counterparts for all

the 15 states. More importantly, the market factors turn out to play more significant roles

within the neural network models. Forecast accuracy is improved for 12 out of the 15 states

after market factors being included. In addition, the three-factor neural network model

outperforms the one-factor neural network model for eight states among the 12 states for

which market factors improve the prediction. These results show that the more flexible neural

network models seem to capture market information more efficiently than linear models.
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While market factors seem not useful for predicting farmland return in some states using

traditional linear models, market factors become helpful under the neural network framework.

Table 4.1 The mean squared error of predicted farmland returns for individual states

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
Arkansas 0.0046 0.0059 0.0092 0.0039 0.0051 0.0048
Illinois 0.0672 0.0675 0.0683 0.0541 0.0591 0.0498
Indiana 0.0690 0.0632 0.0758 0.0671 0.0575 0.0587

Iowa 0.1216 0.1153 0.1336 0.1160 0.1012 0.1087
Kansas 0.0678 0.0680 0.0785 0.0645 0.0622 0.0601

Louisiana 0.0223 0.0230 0.0301 0.0207 0.0199 0.0198
Michigan 0.0336 0.0337 0.0339 0.0315 0.0296 0.0295
Minnesota 0.0638 0.0616 0.0915 0.0625 0.0544 0.0594
Mississippi 0.0191 0.0248 0.0499 0.0180 0.0210 0.0195
Missouri 0.0246 0.0235 0.0288 0.0237 0.0198 0.0187

North Dakota 0.1561 0.1576 0.1939 0.1310 0.1317 0.1352
Ohio 0.0386 0.0371 0.0390 0.0378 0.0358 0.0315

South Dakota 0.0934 0.0926 0.1207 0.0904 0.0844 0.0855
Texas 0.0393 0.0393 0.0355 0.0352 0.0304 0.0299

Wisconsin 0.0234 0.0209 0.0235 0.0216 0.0178 0.0173

4.3.2 Paired Sample t-test

A paired sample t-test (Ramsey and Schafer, 2012) is conducted to formally compare

the forecast accuracy of different models using samples from all the 15 states as a whole.

The paired sample t-test is a statistical procedure used to determine whether the mean

difference between two sets of observations is zero. The null hypothesis assumes the true

mean difference is equal to zero.

The first sample group we use for the t-test is the squared deviations of predicted returns

from the corresponding realized returns, normalized by the square of realized returns to

account for varying return levels across states. Specifically, for the ith forecast of farmland

return in the jth state, the squared error is calculated as ˆ[(Rij − Rij)/Rij]
2, where R̂ij is
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the predicted farmland return and Rij is the realized return. To evaluate if there is any

incremental value by adding market risk factors, the following null hypotheses are tested.

H1: The univariate time-series model and the one-factor model provide no forecasting

accuracy difference under the linear framework.

H2: The one-factor model and the three-factor model provide no forecasting accuracy

difference under the linear framework.

H3: The univariate time-series model and the one-factor model provide no forecasting

accuracy difference under the neural network framework.

H4: The one-factor model and the three-factor model provide no forecasting accuracy

difference under the neural network framework.

Table 4.2 presents the t-test results. Among the linear models, the one-factor model

outperforms the univariate time-series model significantly. However, the difference between

the one-factor model and the three-factor model is not significant. The t-score shows that

the three-factor linear model provides even lower forecast accuracy than the one-factor lin-

ear model, although the difference is not statistically significant. This indicates that the

additional risk factors beyond excess market return may not add more useful information for

predicting future farmland returns. Based on these results, hypothesis H1 can be rejected

but there is not enough support to reject hypothesis H2.

For the neural network models, similar results are observed. Adding a single excess

market return factor lowers forecast error and improves the forecast accuracy significantly.

While adding the two additional market risk factors also leads to lower forecast error, the

difference is not statistically significant. Again, we reject hypothesis H3 but fail to reject

hypothesis H4. All these results indicate that while the excess market return factor adds

useful information for farmland return prediction, the other two market risk factors seem not

helpful under either linear or neural network framework. Therefore, in terms of which market
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factors provide the most accurate forecast, the best model turns out to be the one-factor

model with the excess market return factor included.

Table 4.2 Paired t-test results on forecast accuracy between different models with
the first sample set

t-score p-value
Linear Model Comparisons

Model 1 vs. Model 2 2.5148 0.0132*
Model 2 vs. Model 3 -1.3866 0.1682

Neural Network Model Comparisons
Model 4 vs. Model 5 2.2279 0.0278*
Model 5 vs. Model 6 0.7947 0.4284

To evaluate the effectiveness of the neural network models relative to their linear coun-

terparts, the following hypotheses are also tested.

H5: The linear univariate time-series model and the corresponding neural network model

provide no forecasting accuracy difference.

H6: The linear one-factor model and the corresponding neural network model provide no

forecasting accuracy difference.

H7: The linear three-factor model and the corresponding neural network model provide

no forecasting accuracy difference.

Table 4.3 presents the t-test results for the above hypotheses. A comparison between

the linear and the neural network models shows that all the neural network models provide

higher forecast accuracy than the corresponding linear models. However, only for the one-

factor model does the neural network improve the forecast accuracy significantly. Thus only

hypothesis H6 is rejected while hypotheses H5 and H7 cannot be rejected. As the one-factor

model has shown to be the best model in terms of which risk factors to be included, the

implication is that the use of neural networks improves farmland return forecast accuracy

compared to linear models. This demonstrates the superiority of the neural network approach

relative to linear models in predicting farmland asset returns.
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Table 4.3 Paired t-test results on forecast accuracy between linear and neural net-
work models with the first sample set

t-score p-value
Linear versus Neural Network Model Comparisons

Model 1 vs. Model 4 0.6791 0.4984
Model 2 vs. Model 5 2.0750 0.0401*
Model 3 vs. Model 6 1.3055 0.1942

The second sample set used for the t-test is the absolute value of normalized deviations of

predicted returns from the corresponding realized returns. For the ith forecast of farmland

return in the jth state, the absolute error is calculated as
∣∣∣ ˆ(Rij −Rij)/Rij

∣∣∣, where R̂ij is

the predicted farmland return and Rij is the realized return. The same null hypotheses are

tested with this new sample set.

Table 4.4 presents the t-test results with the new sample set. Again, the linear one-factor

model outperforms the linear univariate time-series model significantly. In addition, the

linear one-factor model also outperforms the linear three-factor model significantly. This

indicates that while adding the excess market return factor improves the forecast accuracy,

adding the additional risk factors actually hurts the forecast accuracy. Based on these results,

hypothesis H1 and H2 are rejected; the best linear model is the one-factor model with the

excess market return factor included.

In terms of the neural network models, adding a single excess market return factor lowers

forecast error and improves the forecast accuracy significantly. Adding the two additional

market risk factors seems to lower the forecast error, but the difference is not statistically

significant. Thus, we reject hypothesis H3 but fail to reject hypothesis H4. The testing

conclusion with the second sample set is again that while the excess market return factor

improves farmland return prediction, the other two risk factors do not help. Under both the

linear and the neural network framework, the best model is the one-factor model with the

excess market return factor included.
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Table 4.4 Paired t-test results on forecast accuracy between different models with
the second sample set

t-score p-value
Linear Model Comparisons

Model 1 vs. Model 2 2.7199 0.0075*
Model 2 vs. Model 3 -3.3811 0.0010*

Neural Network Model Comparisons
Model 4 vs. Model 5 3.1570 0.0020*
Model 5 vs. Model 6 0.1830 0.8551

To evaluate the effectiveness of the neural network models relative to their linear coun-

terparts, the following hypotheses are also tested.

H5: The linear univariate time-series model and the corresponding neural network model

provide no forecasting accuracy difference.

H6: The linear one-factor model and the corresponding neural network model provide no

forecasting accuracy difference.

H7: The linear three-factor model and the corresponding neural network model provide

no forecasting accuracy difference.

Table 4.5 presents the t-test results for the above hypotheses with the second sample

set. The comparison between the linear and the neural network models again shows that all

the neural network models provide higher forecast accuracy than the corresponding linear

models. For both the one-factor model and the three-factor model, the neural network

approach improves the forecast accuracy significantly. That is, hypotheses H6 and H7 are

rejected in support of the neural network models. There is, however, not sufficient evidence

to reject hypotheses H5. The testing results using the two sample sets consistently show the

superiority of the neural network approach in farmland return predictions.
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Table 4.5 Paired t-test results on forecast accuracy between linear and neural net-
work models with the second sample set

t-score p-value
Linear versus Neural Network Model Comparisons

Model 1 vs. Model 4 1.2884 0.2001
Model 2 vs. Model 5 3.5720 0.0005*
Model 3 vs. Model 6 2.9368 0.0040*

4.4 Conclusions

This article examines whether capital market risk factors are useful in farmland return

prediction. We evaluate the predictive ability of the market risk factors using both tradi-

tional linear models and advanced neural network approach. Our results indicate that the

one-factor model including excess market return significantly improves the forecast accu-

racy compared to the univariate time-series model that uses lagged farmland return as the

only predictor. However, there is no significant difference in forecast accuracy between the

one-factor model and the three-factor model with additional risk factors included. These

observations apply consistently to both linear and neural network framework. In addition,

we find that neural network models provide higher forecast accuracy than the corresponding

linear models with the same explanatory variables. For the one-factor model, the improve-

ment in forecast accuracy offered by neural network is statistically significant. This could

be because the non-linear neural network structure captures market information in a more

flexible and potentially more efficient way. For practical implications, the findings in this ar-

ticle suggest that farmers as well as policy makers can take advantage of market risk factors

to make better future farmland return predictions.
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